coulomb stress change
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 22)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 7 (4) ◽  
pp. 593-600
Author(s):  
Matheus Souisa ◽  
Sisca Madonna Sapulete

The Tehoru earthquake occurred due to the release of stress in rocks. There is a release of energy as an earthquake as a result of the rock elasticity limit has been exceeded because the rock is no longer able to withstand the stress. One method to determine the distribution of earthquake stress is the Coulomb stress change method. The study aimed to determine the DCS of the Tehoru earthquake, Seram Island, and the effect of the main earthquake stress release on aftershocks.  The research results show that the DCS distribution of the Tehoru June 16, 2021 earthquake is shown with negative lobes and positive lobes. The negative lobe is found in an area that is perpendicular to the fault plane and has been identified as having experienced relaxation, so there may be still aftershocks with stress values ranging from (0.0 – 0.3) bar. The dominant positive lobe occurs next to the southern end of the fault plane, too much located in the area of increasing Coulomb stress with values ranging from (0.2 - 0.6) bar


2021 ◽  
Author(s):  
Omid Memarian Sorkhabi

Abstract Understanding how the movement of faults and deformation affects such as motion-induced surface stress and strain, which is very important in seismic regions. The best way to learn about the effects of fault movement is modeled. For example, the modeling of surface displacement or deformation and the amount of damage earthquake can be estimated by the model. Coulomb stress changes can be modeled or predicted earthquake aftershocks or future Earthquakes. we employ assumptions on the orientations, rupture lengths and average slip associated with each earthquake to calculate stress changes. Using this model, we displacement, stress and strain at any depth in the Earth's surface acquired. In this study the modeling of earthquakes Mw= 6.5, Mw=6.3 Ahar-Varzaghan. The earthquakes induced displacements, strains and stresses were calculated at the surface at an average depth and its aftershocks for 10-km Ahar and 4 km Varzaghan.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Pepen Supendi ◽  
Mohamad Ramdhan ◽  
Priyobudi ◽  
Dimas Sianipar ◽  
Adhi Wibowo ◽  
...  

AbstractWe present here an analysis of the destructive Mw 6.2 earthquake sequence that took place on 14 January 2021 in Mamuju–Majene, West Sulawesi, Indonesia. Our relocated foreshocks, mainshock, and aftershocks and their focal mechanisms show that they occurred on two different fault planes, in which the foreshock perturbed the stress state of a nearby fault segment, causing the fault plane to subsequently rupture. The mainshock had relatively few aftershocks, an observation that is likely related to the kinematics of the fault rupture, which is relatively small in size and of short duration, thus indicating a high stress-drop earthquake rupture. The Coulomb stress change shows that areas to the northwest and southeast of the mainshock have increased stress, consistent with the observation that most aftershocks are in the northwest.


2021 ◽  
Author(s):  
Omid Memarian Sorkhabi

Abstract Understanding how the movement of faults and deformation affects such as motion-induced surface stress and strain, which is very important in seismic regions. The best way to learn about the effects of fault movement is modeled. For example, the modeling of surface displacement or deformation and the amount of damage earthquake can be estimated by the model. Coulomb stress changes can be modeled or predicted earthquake aftershocks or future Earthquakes. we employ assumptions on the orientations, rupture lengths and average slip associated with each earthquake to calculate stress changes. Using this model, we displacement, stress and strain at any depth in the Earth's surface acquired. In this study the modeling of earthquakes Mw= 6.5, Mw=6.3 Ahar-Varzaghan. The earthquakes induced displacements, strains and stresses were calculated at the surface at an average depth and its aftershocks for 10-km Ahar and 4 km Varzaghan.


Author(s):  
Jianjun Wang ◽  
Caijun Xu ◽  
Jeffrey T. Freymueller ◽  
Yangmao Wen ◽  
Zhuohui Xiao

Abstract Coulomb stress change is the change in resultant force of shear stress and friction imposed on a receiver fault plane. The resulting stress change is often computed using the Coulomb 3.4 and the postseismic Green’s functions and postseismic components (PSGRN-PSCMP) programs. Notwithstanding both preferences, both have incomplete optimally oriented failure planes (OOPs) and are inconvenient to resolve Coulomb stress changes on various fault planes placed in varying depths. Here, we present an alternative program termed AutoCoulomb. It leverages the shell command-line tool to automatically batch-process Coulomb stress changes on all sorts of receiver fault planes. We first validate the program. We then apply it to the 2020 Mw 7.8 Simeonof Island, Alaska, earthquake, as a case study. Our results show that Coulomb stress changes resolved on fixed receiver faults, using the three programs, are in line with each other. So are those resolved on 3D OOPs using the PSGRN–PSCMP and the AutoCoulomb programs. Nevertheless, Coulomb stress changes on 2D OOPs, generated by the AutoCoulomb program, always outweigh those done by the Coulomb 3.4 program, indicating that 2D OOPs constrained by the latter are not the most optimal. Some nonoptimal 2D OOPs result in the reversal of the signs of Coulomb stress changes, posing a risk of misleading stress shadows with negative Coulomb stress changes. For the case study, the 28 July 2020 Mw 6.1 aftershock received a positive coseismic Coulomb stress change of ∼3.5 bars. In contrast, the compounded coseismic Coulomb stress changes at the hypocenters of the 1946 Mw 8.2, the 1948 Mw 7.2, and the 2020 Mw 7.8 earthquakes are within a range from −1.1 to 0.1 bar, suggesting that coseismic Coulomb stress changes promoted by preceding mainshocks alone are not responsible for these mainshocks. Other factors, such as postseismic viscoelastic relaxation, afterslip, and slow slip, may contribute to promoting their occurrence.


2021 ◽  
Author(s):  
Hanna Blanck ◽  
Kristín Vogfjörd ◽  
Halldór Geirsson ◽  
Vala Hjörleifsdóttir

<p>From 1993 to 1998, the Hengill volcanic area in SW-Iceland was subjected to a volcano-tectonic event which caused a local uplift of the crust of 8 cm and triggered over 90.000 earthquakes. Relocating a sub-set of 12.000 earthquakes in the direct vicinity of the uplift centre improved resolution and enabled the mapping of 25, mostly NNE-SSW and ENE-WSW oriented sub-vertical groups of earthquake which are interpreted as faults. Focal mechanisms were calculated, using the best fitting plane through a group of earthquakes as additional constraint. Slip on the interpreted faults could be estimated averaging slip of all earthquakes within that group. Most faults show strike-slip movement with a small normal component. Right-lateral slip prevails. We modelled Coulomb stress changes that the uplift would have caused and compared them to out results. The Coulomb stress changes can only explain the observed movement on some of the faults but on others fault movements is impeded, that is, the Coulomb stress change is negative. Varying the location of the uplift within its error margin increases the number of faults on which the observed movement is promoted but the slip on a number of faults remains unexplained.  </p>


Sign in / Sign up

Export Citation Format

Share Document