scholarly journals On the Environments of Giant Radio Galaxies

Author(s):  
Ting-Wen Lan ◽  
J Xavier Prochaska

Abstract We test the hypothesis that environments play a key role in enabling the growth of enormous radio structures spanning more than 700 kpc, an extreme population of radio galaxies called giant radio galaxies (GRGs). To achieve this, we explore (1) the relationships between the occurrence of GRGs and the surface number density of surrounding galaxies, including satellite galaxies and galaxies from neighboring halos, as well as (2) the GRG locations towards large-scale structures. The analysis is done by making use of a homogeneous sample of 110 GRGs detected from the LOFAR Two-metre Sky Survey in combination with photometric galaxies from the DESI Legacy Imaging Surveys and a large-scale filament catalog from the Sloan Digital Sky Survey. Our results show that the properties of galaxies around GRGs are similar with that around the two control samples, consisting of galaxies with optical colors and luminosity matched to the properties of the GRG host galaxies. Additionally, the properties of surrounding galaxies depend on neither their relative positions to the radio jet/lobe structures nor the sizes of GRGs. We also find that the locations of GRGs and the control samples with respect to the nearby large-scale structures are consistent with each other. These results demonstrate that there is no correlation between the GRG properties and their environments traced by stars, indicating that external galaxy environments are not the primary cause of the large sizes of the radio structures. Finally, regarding radio feedback, we show that the fraction of blue satellites does not correlate with the GRG properties, suggesting that the current epoch of radio jets have minimal influence on the nature of their surrounding galaxies.

2006 ◽  
Vol 6 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Xin-Fa Deng ◽  
Yi-Qing Chen ◽  
Qun Zhang ◽  
Ji-Zhou He

2014 ◽  
Vol 11 (S308) ◽  
pp. 299-300
Author(s):  
Shishir Sankhyayan ◽  
J. Bagchi ◽  
P. Sarkar ◽  
V. Sahni ◽  
J. Jacob

AbstractWe have initiated the search and detailed study of large scale structures present in the universe using galaxy redshift surveys. In this process, we take the volume-limited sample of galaxies from Sloan Digital Sky Survey III and find very large structures even beyond the redshift of 0.2. One of the structures is even greater than 600 Mpc which raises a question on the homogeneity scale of the universe. The shapes of voids-structures (adjacent to each other) seem to be correlated, which supports the physical existence of the observed structures. The other observational supports include galaxy clusters' and QSO distribution's correlation with the density peaks of the volume limited sample of galaxies.


2018 ◽  
Vol 619 ◽  
pp. A24 ◽  
Author(s):  
Valeria Mesa ◽  
Fernanda Duplancic ◽  
Sol Alonso ◽  
Maria Rosa Muñoz Jofré ◽  
Georgina Coldwell ◽  
...  

Aims. With the aim of performing an analysis of the orientations of galaxy pair systems with respect to the underlying large-scale structure, we study the alignment between the axis connecting the pair galaxies and the host cosmic filament where the pair resides. In addition, we analyze the dependence of the amplitude of the alignment on the morphology of pair members as well as filament properties. Methods. We build a galaxy pair catalog requiring rp < 100 h−1 kpc and ΔV < 500 km s−1 within redshift z < 0.1 from the Sloan Digital Sky Survey (SDSS). We divided the galaxy pair catalog taking into account the morphological classification by defining three pair categories composed by elliptical–elliptical (E–E), elliptical–spiral (E–S) and spiral–spiral (S–S) galaxies. We use a previously defined catalog of filaments obtained from SDSS and we select pairs located closer than 1 h−1 Mpc to the filament spine, which are considered as members of filaments. For these pairs, we calculate the relative angle between the axis connecting each galaxy, and the direction defined by the spine of the parent filament. Results. We find a statistically significant alignment signal between the pair axes and the spine of the host filaments consistent with a relative excess of ∼15% aligned pairs. We obtain that pairs composed by elliptical galaxies exhibit a stronger alignment, showing a higher alignment signal for pairs closer than 200 h−1 kpc to the filament spine. In addition, we find that the aligned pairs are associated with luminous host filaments populated with a high fraction of elliptical galaxies. The findings of this work show that large-scale structures play a fundamental role in driving galactic anisotropic accretion as induced by galaxy pairs exhibiting a preferred alignment along the filament direction.


Author(s):  
Michael Ramuta

A grasp of the life-cycles of large-scale structures is critical to understanding the Universe. This can be accomplished through the study of poor clusters-- that is, younger clusters that are likely evolving to another state. The selected clusters are significant in that they are poor but also possess a type-cD galaxy. This brighter central galaxy suggests that these clusters may be dynamically evolved and are potential candidates for fossil groups. In order to more fully understand the structure and behavior of poor galaxy clusters, 12 clusters were selected and analyzed. Using data from the Sloan Digital Sky Survey, Chandra X-Ray Archive, and the VLA FIRST Survey, we present x-ray profiles and radio observations of these 12 galaxy clusters. 


2019 ◽  
Vol 631 ◽  
pp. A132 ◽  
Author(s):  
S. J. Molyneux ◽  
C. M. Harrison ◽  
M. E. Jarvis

Using a sample of 2922 z <  0.2, spectroscopically identified active galactic nuclei (AGN), we explore the relationship between radio size and the prevalence of extreme ionised outflows, as traced using broad [O III] emission-line profiles in spectra obtained by the Sloan Digital Sky Survey (SDSS). To classify radio sources as compact or extended, we combined a machine-learning technique for morphological classification with size measurements from two-dimensional Gaussian models to data from all-sky radio surveys. We find that the two populations have statistically different [O III] emission-line profiles; the compact sources tend to have the most extreme gas kinematics. When the radio emission is confined within 3″ (i.e. within the spectroscopic fibre or ≲5 kpc at the median redshift), the chance of observing broad [O III] emission-line components, which are indicative of very high velocity outflows and have a full width at half-maximum > 1000 km s−1, is twice as high. This difference is greatest for the highest radio luminosity bin of log[L1.4 GHz/W Hz−1] = 23.5−24.5 where the AGN dominate the radio emission; specifically, > 1000 km s−1 components are almost four times as likely to occur when the radio emission is compact in this subsample. Our follow-up ≈0.3″–1″ resolution radio observations for a subset of targets in this luminosity range reveal that radio jets and lobes are prevalent, and suggest that compact jets might be responsible for the stronger outflows in the wider sample. Our results are limited by the available relatively shallow all-sky radio surveys, but forthcoming surveys will provide a more complete picture of the connection between radio emission and outflows. Overall, our results add to the growing body of evidence that ionised outflows and compact radio emission in highly accreting “radiative” AGN are closely connected, possibly as a result of young or weak radio jets.


2019 ◽  
Vol 626 ◽  
pp. A8 ◽  
Author(s):  
V. Missaglia ◽  
F. Massaro ◽  
A. Capetti ◽  
M. Paolillo ◽  
R. P. Kraft ◽  
...  

We present a catalog of 47 wide-angle tailed radio galaxies (WATs), the WATCAT, mainly built including a radio morphological classification; WATs were selected by combining observations from the National Radio Astronomy Observatory/Very Large Array Sky Survey (NVSS), the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST), and the Sloan Digital Sky Survey (SDSS). We included in the catalog only radio sources showing two-sided jets with two clear “warmspots” (i.e., jet knots as bright as 20% of the nucleus) lying on the opposite side of the radio core, and having classical extended emission resembling a plume beyond them. The catalog is limited to redshifts z ≤ 0.15, and lists only sources with radio emission extended beyond 30 kpc from the host galaxy. We found that host galaxies of WATCAT sources are all luminous (−20.5 ≳ Mr ≳ −23.7), red early-type galaxies with black hole masses in the range 108 ≲ MBH ≲ 109 M⊙. The spectroscopic classification indicates that they are all low-excitation galaxies (LEGs). Comparing WAT multifrequency properties with those of FR I and FR II radio galaxies at the same redshifts, we conclude that WATs show multifrequency properties remarkably similar to FR I radio galaxies, having radio power of typical FR IIs.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 113-123 ◽  
Author(s):  
Ryan C. Hickox ◽  
Stephanie M. LaMassa ◽  
John D. Silverman ◽  
Alexander Kolodzig

AbstractOur understanding of the cosmic evolution of supermassive black holes (SMBHs) has been revolutionized by the advent of large multiwavelength extragalactic surveys, which have enabled detailed statistical studies of the host galaxies and large-scale structures of active galactic nuclei (AGN). We give an overview of some recent results on SMBH evolution, including the connection between AGN activity and star formation in galaxies, the role of galaxy mergers in fueling AGN activity, the nature of luminous obscured AGN, and the connection between AGN and their host dark matter halos. We conclude by looking to the future of large-scale extragalactic X-ray and spectroscopic surveys.


2017 ◽  
Vol 472 (1) ◽  
pp. 998-1022 ◽  
Author(s):  
Lu Shen ◽  
Neal A. Miller ◽  
Brian C. Lemaux ◽  
Adam R. Tomczak ◽  
Lori M. Lubin ◽  
...  

1997 ◽  
Vol 14 (1) ◽  
pp. 126-126 ◽  
Author(s):  
K. Wakamatsu ◽  
M. Malkan ◽  
Q. A. Parker ◽  
H. Karoji

A problem for studies of large scale structures in nearby space (cz < 10,000 km s-1) is the presence of the Zone of Avoidance which is so large and wide on the sky that potentially important clusters and voids remain undetected. A prime example was the Ophiuchus cluster discovered by Wakamatsu and Malkan (1981) as a heavily obscured cD cluster close to the Galactic centre region (l = 0·5°, b = +9·5°). It is the second brightest X-ray cluster after Perseus. A hidden galaxy survey was performed by visually searching ESO/SERC Sky Survey (R and J) copy films of the region centred at l = 355°, b = +10° finding more than 4000 galaxies in six fields. Several irregular clusters adjacent to Ophiuchus were found forming a supercluster which may be connected to the Hercules supercluster by a wall structure parallel to the local supergalactic plane (Wakamatsu et al. 1994). In front of this supercluster, an 'Ophiuchus Void' is suggested (cz = 4,500 km s-1). The Ophiuchus supercluster at cz = 8,500 km s-1 is similar to the Hercules supercluster (cz = 11,000 km s-1), and extends north toward the latter supercluster.


Sign in / Sign up

Export Citation Format

Share Document