scholarly journals Impact of relativistic jets on the star formation rate: A turbulence-regulated framework

Author(s):  
Ankush Mandal ◽  
Dipanjan Mukherjee ◽  
Christoph Federrath ◽  
Nicole P H Nesvadba ◽  
Geoffrey V Bicknell ◽  
...  

Abstract We apply a turbulence-regulated model of star formation to calculate the star formation rate (SFR) of dense star-forming clouds in simulations of jet-ISM interactions. The method isolates individual clumps and accounts for the impact of virial parameter and Mach number of the clumps on the star formation activity. This improves upon other estimates of the SFR in simulations of jet–ISM interactions, which are often solely based on local gas density, neglecting the impact of turbulence. We apply this framework to the results of a suite of jet-ISM interaction simulations to study how the jet regulates the SFR both globally and on the scale of individual star-forming clouds. We find that the jet strongly affects the multi-phase ISM in the galaxy, inducing turbulence and increasing the velocity dispersion within the clouds. This causes a global reduction in the SFR compared to a simulation without a jet. The shocks driven into clouds by the jet also compress the gas to higher densities, resulting in local enhancements of the SFR. However, the velocity dispersion in such clouds is also comparably high, which results in a lower SFR than would be observed in galaxies with similar gas mass surface densities and without powerful radio jets. We thus show that both local negative and positive jet feedback can occur in a single system during a single jet event, and that the star-formation rate in the ISM varies in a complicated manner that depends on the strength of the jet-ISM coupling and the jet break-out time-scale.

2021 ◽  
Vol 7 (2) ◽  
pp. 49-57
Author(s):  
D. N. Chhatkuli ◽  
S. Paudel ◽  
A. K. Gautam ◽  
B. Aryal

We studied the spectroscopic properties of the low redshift (z = 0.0130) interacting dwarf galaxy SDSS J114818.18-013823.7. It is a compact galaxy of half-light radius 521 parsec. It’s r-band absolute magnitude is -16.71 mag. Using a publicly available optical spectrum from the Sloan Sky Survey data archive, we calculated star-formation rate, emission line metallicity, and dust extinction of the galaxy. Star formation rate (SFR) due to Hα is found to be 0.118 Mʘ year-1 after extinction correction. The emission-line metallicity, 12+log(O/H), is 8.13 dex. Placing these values in the scaling relation of normal galaxies, we find that SDSS J114818.18-013823.7 is a significant outlier from both size-magnitude relation and SFR-B-band absolute relation. Although SDSS J114818.18-013823.7 possess enhance rate of star-formation, the current star-formation activity can persist several Giga years in the future at the current place and it remains compact.


2020 ◽  
Vol 493 (4) ◽  
pp. 5596-5605 ◽  
Author(s):  
Robin H W Cook ◽  
Luca Cortese ◽  
Barbara Catinella ◽  
Aaron Robotham

ABSTRACT We use our catalogue of structural decomposition measurements for the extended GALEX Arecibo SDSS Survey (xGASS) to study the role of bulges both along and across the galaxy star-forming main sequence (SFMS). We show that the slope in the sSFR–M⋆ relation flattens by ∼0.1 dex per decade in M⋆ when re-normalizing specifice star formation rate (sSFR) by disc stellar mass instead of total stellar mass. However, recasting the sSFR–M⋆ relation into the framework of only disc-specific quantities shows that a residual trend remains against disc stellar mass with equivalent slope and comparable scatter to that of the total galaxy relation. This suggests that the residual declining slope of the SFMS is intrinsic to the disc components of galaxies. We further investigate the distribution of bulge-to-total ratios (B/T) as a function of distance from the SFMS (ΔSFRMS). At all stellar masses, the average B/T of local galaxies decreases monotonically with increasing ΔSFRMS. Contrary to previous works, we find that the upper envelope of the SFMS is not dominated by objects with a significant bulge component. This rules out a scenario in which, in the local Universe, objects with increased star formation activity are simultaneously experiencing a significant bulge growth. We suggest that much of the discrepancies between different works studying the role of bulges originate from differences in the methodology of structurally decomposing galaxies.


2019 ◽  
Vol 489 (2) ◽  
pp. 2792-2818 ◽  
Author(s):  
A Zanella ◽  
E Le Floc’h ◽  
C M Harrison ◽  
E Daddi ◽  
E Bernhard ◽  
...  

ABSTRACT We investigate the contribution of clumps and satellites to the galaxy mass assembly. We analysed spatially resolved HubbleSpace Telescope observations (imaging and slitless spectroscopy) of 53 star-forming galaxies at z ∼ 1–3. We created continuum and emission line maps and pinpointed residual ‘blobs’ detected after subtracting the galaxy disc. Those were separated into compact (unresolved) and extended (resolved) components. Extended components have sizes ∼2 kpc and comparable stellar mass and age as the galaxy discs, whereas the compact components are 1.5 dex less massive and 0.4 dex younger than the discs. Furthermore, the extended blobs are typically found at larger distances from the galaxy barycentre than the compact ones. Prompted by these observations and by the comparison with simulations, we suggest that compact blobs are in situ formed clumps, whereas the extended ones are accreting satellites. Clumps and satellites enclose, respectively, ∼20 per cent and ≲80 per cent of the galaxy stellar mass, ∼30 per cent and ∼20 per cent of its star formation rate. Considering the compact blobs, we statistically estimated that massive clumps (M⋆ ≳ 109 M⊙) have lifetimes of ∼650 Myr, and the less massive ones (108 < M⋆ < 109 M⊙) of ∼145 Myr. This supports simulations predicting long-lived clumps (lifetime ≳ 100 Myr). Finally, ≲30 per cent (13 per cent) of our sample galaxies are undergoing single (multiple) merger(s), they have a projected separation ≲10 kpc, and the typical mass ratio of our satellites is 1:5 (but ranges between 1:10 and 1:1), in agreement with literature results for close pair galaxies.


2019 ◽  
Vol 627 ◽  
pp. A53 ◽  
Author(s):  
B. Husemann ◽  
J. Scharwächter ◽  
T. A. Davis ◽  
M. Pérez-Torres ◽  
I. Smirnova-Pinchukova ◽  
...  

Context. Galaxy-wide outflows driven by star formation and/or an active galactic nucleus (AGN) are thought to play a crucial rule in the evolution of galaxies and the metal enrichment of the inter-galactic medium. Direct measurements of these processes are still scarce and new observations are needed to reveal the nature of outflows in the majority of the galaxy population. Aims. We combine extensive, spatially-resolved, multi-wavelength observations, taken as part of the Close AGN Reference Survey (CARS), for the edge-on disc galaxy HE 1353−1917 in order to characterise the impact of the AGN on its host galaxy via outflows and radiation. Methods. Multi-color broad-band photometry was combined with spatially-resolved optical, near-infrared (NIR) and sub-mm and radio observations taken with the Multi-Unit Spectroscopy Explorer (MUSE), the Near-infrared Integral Field Spectrometer (NIFS), the Atacama Large Millimeter Array (ALMA), and the Karl G. Jansky Very Large Array (VLA) to map the physical properties and kinematics of the multi-phase interstellar medium. Results. We detect a biconical extended narrow-line region ionised by the luminous AGN orientated nearly parallel to the galaxy disc, extending out to at least 25 kpc. The extra-planar gas originates from galactic fountains initiated by star formation processes in the disc, rather than an AGN outflow, as shown by the kinematics and the metallicity of the gas. Nevertheless, a fast, multi-phase, AGN-driven outflow with speeds up to 1000 km s−1 is detected close to the nucleus at 1 kpc distance. A radio jet, in connection with the AGN radiation field, is likely responsible for driving the outflow as confirmed by the energetics and the spatial alignment of the jet and multi-phase outflow. Evidence for negative AGN feedback suppressing the star formation rate (SFR) is mild and restricted to the central kpc. But while any SFR suppression must have happened recently, the outflow has the potential to greatly impact the future evolution of the galaxy disc due to its geometrical orientation. Conclusions.. Our observations reveal that low-power radio jets can play a major role in driving fast, multi-phase, galaxy-scale outflows even in radio-quiet AGN. Since the outflow energetics for HE 1353−1917 are consistent with literature, scaling relation of AGN-driven outflows the contribution of radio jets as the driving mechanisms still needs to be systematically explored.


2019 ◽  
Vol 492 (1) ◽  
pp. 96-139 ◽  
Author(s):  
Asa F L Bluck ◽  
Roberto Maiolino ◽  
Sebastian F Sánchez ◽  
Sara L Ellison ◽  
Mallory D Thorp ◽  
...  

ABSTRACT We present an analysis of star formation and quenching in the SDSS-IV MaNGA-DR15, utilizing over 5 million spaxels from ∼3500 local galaxies. We estimate star formation rate surface densities (ΣSFR) via dust corrected H α flux where possible, and via an empirical relationship between specific star formation rate (sSFR) and the strength of the 4000 Å break (D4000) in all other cases. We train a multilayered artificial neural network (ANN) and a random forest (RF) to classify spaxels into ‘star-forming’ and ‘quenched’ categories given various individual (and groups of) parameters. We find that global parameters (pertaining to the galaxy as a whole) perform collectively the best at predicting when spaxels will be quenched, and are substantially superior to local/spatially resolved and environmental parameters. Central velocity dispersion is the best single parameter for predicting quenching in central galaxies. We interpret this observational fact as a probable consequence of the total integrated energy from active galactic neucleus (AGN) feedback being traced by the mass of the black hole, which is well known to correlate strongly with central velocity dispersion. Additionally, we train both an ANN and RF to estimate ΣSFR values directly via regression in star-forming regions. Local/spatially resolved parameters are collectively the most predictive at estimating ΣSFR in these analyses, with stellar mass surface density at the spaxel location (Σ*) being by far the best single parameter. Thus, quenching is fundamentally a global process but star formation is governed locally by processes within each spaxel.


2020 ◽  
Vol 494 (3) ◽  
pp. 3317-3327 ◽  
Author(s):  
D F Morell ◽  
A L B Ribeiro ◽  
R R de Carvalho ◽  
S B Rembold ◽  
P A A Lopes ◽  
...  

ABSTRACT We analyse the dependence of galaxy evolution on cluster dynamical state and galaxy luminosity for a sample of 146 galaxy clusters from the Yang SDSS catalogue. Clusters were split according to their velocity distribution in Gaussians (G) and Non-Gaussians (NG), and further divided by luminosity regime. We performed a classification in the plane of mean stellar age versus specific star formation rate, providing three classes: star-forming (SF), passive (PAS) and intermediate (GV – green valley). We show that galaxies evolve in the same way in G and NG systems, but also suggest that their formation histories lead to different mixtures of galactic types and infall patterns. Separating the GV into star-forming and passive components, we find more bright galaxies in the passive mode of NG systems than in that of G systems. We also find more intermediate faint galaxies in the star-forming component of NG systems than in that of G systems. Our results suggest that GV is the stage where the transition from types Sab and Scd to S0 must be taking place, but the conversion between morphological types is independent of the dynamical stage of the clusters. Analysing the velocity dispersion profiles, we find that objects recently infalling onto clusters have a different composition between G and NG systems. While all galaxy types infall on to G systems, Sab and Scd dominate the infall on to NG systems. Finally, we find that faint Scd galaxies in the outskirts of NG systems present higher asymmetries relative to the mean asymmetry of field galaxies, suggesting that there are environmental effects acting on these objects.


2020 ◽  
Vol 494 (4) ◽  
pp. 6053-6071 ◽  
Author(s):  
Sarah Appleby ◽  
Romeel Davé ◽  
Katarina Kraljic ◽  
Daniel Anglés-Alcázar ◽  
Desika Narayanan

ABSTRACT We study specific star formation rate (sSFR) and gas profiles of star-forming (SF) and green valley (GV) galaxies in the simba cosmological hydrodynamic simulation. SF galaxy half-light radii (Rhalf) at z = 0 and their evolution (∝(1 + z)−0.78) agree with observations. Passive galaxy Rhalf agree with observations at high redshift, but by z = 0 are too large, owing to numerical heating. We compare simbaz = 0 sSFR radial profiles for SF and GV galaxies to observations. simba shows strong central depressions in star formation rate (SFR), sSFR, and gas fraction in GV galaxies and massive SF systems, qualitatively as observed, owing to black hole X-ray feedback, which pushes central gas outwards. Turning off X-ray feedback leads to centrally peaked sSFR profiles as in other simulations. In conflict with observations, simba yields GV galaxies with strongly dropping sSFR profiles beyond ≳Rhalf, regardless of active galactic nucleus feedback. The central depression owes to lowering molecular gas content; the drop in the outskirts owes to reduced star formation efficiency. simba’s satellites have higher central sSFR and lower outskirts sSFR than centrals, in qualitative agreement with observations. At z = 2, simba does not show central depressions in massive SF galaxies, suggesting simba’s X-ray feedback should be more active at high-z. High-resolution tests indicate central sSFR suppression is not sensitive to numerical resolution. Reproducing the central sSFR depression in z = 0 GV galaxies represents a unique success of simba. The remaining discrepancies highlight the importance of SFR and gas profiles in constraining quenching mechanisms.


2015 ◽  
Vol 11 (S315) ◽  
pp. 183-190
Author(s):  
James Di Francesco

AbstractWe explore the relationship between the total gas surface density and star formation rate surface density, a.k.a., the “Kennicutt-Schmidt relation,” in a Galactic context. Specifically, we probe the origins of thresholds in the behaviour of the K-S relation at 10 M⊙ pc−2 and 100-200 M⊙ pc−2 using images from the Herschel Hi-GAL and Gould Belt surveys. In both cases, pervasive filamentary structures are seen, possibly due to turbulent motions. The Hi-GAL image supports the view that at ~10 M⊙ pc−2 gas becomes molecular, leading to the formation of clouds that harbour star formation. The GBS images suggest the 100-200 M⊙ pc−2 threshold originates from the nature of filaments being stable until a critical column density of ~160 M⊙ pc−2 is reached. Therefore, the transition between non-star-forming and star-forming gas in clouds (and galaxies) may be set universally by the dynamical properties of filaments.


2018 ◽  
Vol 613 ◽  
pp. A72 ◽  
Author(s):  
M. Girard ◽  
M. Dessauges-Zavadsky ◽  
D. Schaerer ◽  
M. Cirasuolo ◽  
O. J. Turner ◽  
...  

We present results from the KMOS LENsing Survey (KLENS), which is exploiting gravitational lensing to study the kinematics of 24 star-forming galaxies at 1.4 < z < 3.5 with a median mass of log(M⋆∕M⊙) = 9.6 and a median star formation rate (SFR) of 7.5 M⊙ yr−1. We find that 25% of these low mass/low SFR galaxies are rotation-dominated, while the majority of our sample shows no velocity gradient. When combining our data with other surveys, we find that the fraction of rotation-dominated galaxies increases with the stellar mass, and decreases for galaxies with a positive offset from the main sequence (higher specific star formation rate). We also investigate the evolution of the intrinsic velocity dispersion, σ0, as a function of the redshift, z, and stellar mass, M⋆, assuming galaxies in quasi-equilibrium (Toomre Q parameter equal to 1). From the z − σ0 relation, we find that the redshift evolution of the velocity dispersion is mostly expected for massive galaxies (log(M⋆∕M⊙) > 10). We derive a M⋆ − σ0 relation, using the Tully–Fisher relation, which highlights that a different evolution of the velocity dispersion is expected depending on the stellar mass, with lower velocity dispersions for lower masses, and an increase for higher masses, stronger at higher redshift. The observed velocity dispersions from this work and from comparison samples spanning 0 < z < 3.5 appear to follow this relation, except at higher redshift (z > 2), where we observe higher velocity dispersions for low masses (log(M⋆∕M⊙) ~ 9.6) and lower velocity dispersions for high masses (log(M⋆∕M⊙) ~ 10.9) than expected. This discrepancy could, for instance, suggest that galaxies at high redshift do not satisfy the stability criterion, or that the adopted parametrization of the specific star formation rate and molecular properties fail at high redshift.


Author(s):  
Roland M Crocker ◽  
Mark R Krumholz ◽  
Todd A Thompson

Abstract Cosmic rays (CRs) are a plausible mechanism for launching winds of cool material from the discs of star-forming galaxies. However, there is no consensus on what types of galaxies likely host CR-driven winds, or what role these winds might play in regulating galaxies’ star formation rates. Using a detailed treatment of the transport and losses of hadronic CRs developed in the previous paper in this series, here we develop a semi-analytic model that allows us to assess the viability of using CRs to launch cool winds from galactic discs. In particular, we determine the critical CR fluxes – and corresponding star formation rate surface densities – above which hydrostatic equilibrium within a given galaxy is precluded because CRs drive the gas off in a wind or otherwise render it unstable. Our model demonstrates that catastrophic, CR-driven wind loss is a possibility at galactic mean surface densities below $\, {\lesssim}\, 10^2 \ M_{\odot }$ pc−2. In this regime – encompassing the Galaxy and local dwarfs – the locus of the CR stability curve patrols the high side of the observed distribution of galaxies in the Kennicutt-Schmidt parameter space of star formation rate versus gas surface density. However, hadronic losses render CRs unable to drive global winds in galaxies with surface densities above the ∼102 − 103M⊙ pc−2 transition region. Our results show that quiescent, low surface density galaxies like the Milky Way are poised on the cusp of instability, such that small changes to ISM parameters can lead to the launching of CR-driven outflows, and we suggest that, as a result, CR feedback sets an ultimate limit to the star formation efficiency of most modern galaxies.


Sign in / Sign up

Export Citation Format

Share Document