tooth replacement
Recently Published Documents


TOTAL DOCUMENTS

393
(FIVE YEARS 79)

H-INDEX

37
(FIVE YEARS 5)

2021 ◽  
Vol 14 (4) ◽  
pp. 1435-1443
Author(s):  
Mohammed M. Al Moaleem

Hürzeler presented the socket-shield technique (SST) more than 10 years ago. The partial extraction therapy (PET), a collective concept of utilizing the patient’s own tooth root to preserve the periodontium and peri-implant tissue, has been remarkably developed. PET comprises a group of novel techniques for post-extraction implant placement. Several modifications of PET and simultaneous implant placement have been presented since its inception. Since its origin, several alterations have been employed in the methodology of partial extraction of the root and the simultaneous implant placement. A repeatable, predictable protocol is needed to provide tooth replacement in esthetic dentistry. Moreover, a standardized procedure provides a good framework for clinicians to report data relating to the technique with procedural consistency. This review aims to illustrate a reproducible and systematic protocol for the PET techniques with immediate implant placement at the aesthetic zone. The most used technique is the socket-shield technique, which is potentially offers promising results, minimizing the necessity for invasive bone grafts round implants in the aesthetic area, clinical data to support this is very inadequate. The limited research data existing is cooperated by a deficiency of well-designed prospective randomized controlled investigations. The present case studies and techniques are of actual incomplete technical value. Retrospective studies published in limited records but are of inconsistent plan. At this point, it is indistinct whether the socket-shield technique will offer a stable long-time outcome or not


2021 ◽  
Author(s):  
Kumiko Matsui ◽  
Yuri Kimura

Abstract Vertebrates evolved tooth replacement over 400 million years ago. Over 200 million years later, the combination of vertical tooth replacement with thecodont implantation (teeth in bone sockets) has been considered a key morphological innovation in mammal evolution. We discovered that an extinct fish taxon, Serrasalmimus secans, that shows this same innovation in a lineage (Serrasalmimidae) that survived the end Cretaceous mass extinction. Carnassial teeth are known in both mammals and pycnodont fish, but these teeth do not share the same tissues nor developmental processes. Therefore, a serrasalmimid pycnodont fish independently acquired mammal-like tooth replacement and implantation, thus showing that fishes and mammals evolved convergent carnassial dental morphologies at about the same time, around 60 Ma, in separate ecosystems.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Keegan M. Melstrom ◽  
Luis M. Chiappe ◽  
Nathan D. Smith

Abstract Background Dinosaurs dominated terrestrial environments for over 100 million years due in part to innovative feeding strategies. Although a range of dental adaptations was present in Late Jurassic dinosaurs, it is unclear whether dinosaur ecosystems exhibited patterns of tooth disparity and dietary correlation similar to those of modern amniotes, in which carnivores possess simple teeth and herbivores exhibit complex dentitions. To investigate these patterns, we quantified dental shape in Late Jurassic dinosaurs to test relationships between diet and dental complexity. Results Here, we show that Late Jurassic dinosaurs exhibited a disparity of dental complexities on par with those of modern saurians. Theropods possess relatively simple teeth, in spite of the range of morphologies tested, and is consistent with their inferred carnivorous habits. Ornithischians, in contrast, have complex dentitions, corresponding to herbivorous habits. The dentitions of macronarian sauropods are similar to some ornithischians and living herbivorous squamates but slightly more complex than other sauropods. In particular, all diplodocoid sauropods investigated possess remarkably simple teeth. The existence of simple teeth in diplodocoids, however, contrasts with the pattern observed in nearly all known herbivores (living or extinct). Conclusions Sauropod dinosaurs exhibit a novel approach to herbivory not yet observed in other amniotes. We demonstrate that sauropod tooth complexity is related to tooth replacement rate rather than diet, which contrasts with the results from mammals and saurians. This relationship is unique to the sauropod clade, with ornithischians and theropods displaying the patterns observed in other groups. The decoupling of herbivory and tooth complexity paired with a correlation between complexity and replacement rate demonstrates a novel evolutionary strategy for plant consumption in sauropod dinosaurs.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12361
Author(s):  
Huali Chang ◽  
Hai-Lu You ◽  
Li Xu ◽  
Waisum Ma ◽  
Diansong Gao ◽  
...  

Tooth replacement rate is an important feature related to feeding mechanics and food choices for dinosaurs. However, only a few data points are available for sauropod dinosaurs, partially due to rarity of relevant fossil material. Four somphospondylan sauropod species have been recovered from the Lower Cretaceous Aptian–Albian Haoling Formation in the Ruyang Basin, Henan Province of central China, but no cranial material has been reported except for a single crown. Here we report the discovery of the rostral portion of a left dentary with replacement teeth in its first five alveoli. Comparative anatomical study shows the partial dentary can be assigned to a member of early diverging somphospondylans. The non-destructive tooth length-based approach to estimating tooth formation time and replacement rate is adopted here. The estimated tooth replacement rate is 76 days, faster than that of Brachiosaurus (83 days) and much lower than typical late diverging lithostrotian titanosaurians (20 days). Thus, this discovery adds an intermediate tooth replacement rate in the evolution of titanosauriform sauropods and supports the idea that evolution of tooth replacement rate is clade-specific. This discovery also provides more information to understand the Ruyang sauropod assemblage, which includes one of the most giant dinosaurs to have walked our Earth (Ruyangosaurus giganteus).


2021 ◽  
Vol 288 (1961) ◽  
Author(s):  
M. R. Whitney ◽  
K. D. Angielczyk ◽  
B. R. Peecook ◽  
C. A. Sidor

The mammalian tusk is a unique and extreme morphotype among modern vertebrate dentitions. Tusks—defined here as ever-growing incisors or canines composed of dentine—evolved independently multiple times within mammals yet have not evolved in other extant vertebrates. This suggests that there is a feature specific to mammals that facilitates the evolution of this specialized dentition. To investigate what may underpin the evolution of tusks, we histologically sampled the tusks of dicynodont therapsids: the earliest iteration of tusk evolution and the only non-mammalian synapsid clade to have acquired such a dentition. We studied the tissue composition, attachment tissues, development and replacement in 10 dicynodont taxa and show multiple developmental pathways for the adult dentitions of dicynodont tusks and tusk-like caniniforms. In a phylogenetic context, these developmental pathways reveal an evolutionary scenario for the acquisition of an ever-growing tusk—an event that occurred convergently, but only in derived members of our sample. We propose that the evolution of an ever-growing dentition, such as a tusk, is predicated on the evolution of significantly reduced tooth replacement and a permanent soft-tissue attachment. Both of these features are fixed in the dentitions of crown-group mammals, which helps to explain why tusks are restricted to this clade among extant vertebrates.


Sign in / Sign up

Export Citation Format

Share Document