morphological innovation
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 17)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Kumiko Matsui ◽  
Yuri Kimura

Abstract Vertebrates evolved tooth replacement over 400 million years ago. Over 200 million years later, the combination of vertical tooth replacement with thecodont implantation (teeth in bone sockets) has been considered a key morphological innovation in mammal evolution. We discovered that an extinct fish taxon, Serrasalmimus secans, that shows this same innovation in a lineage (Serrasalmimidae) that survived the end Cretaceous mass extinction. Carnassial teeth are known in both mammals and pycnodont fish, but these teeth do not share the same tissues nor developmental processes. Therefore, a serrasalmimid pycnodont fish independently acquired mammal-like tooth replacement and implantation, thus showing that fishes and mammals evolved convergent carnassial dental morphologies at about the same time, around 60 Ma, in separate ecosystems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cecilia Zumajo-Cardona ◽  
Damon P. Little ◽  
Dennis Stevenson ◽  
Barbara A. Ambrose

AbstractAlthough the seed is a key morphological innovation, its origin remains unknown and molecular data outside angiosperms is still limited. Ginkgo biloba, with a unique place in plant evolution, being one of the first extant gymnosperms where seeds evolved, can testify to the evolution and development of the seed. Initially, to better understand the development of the ovules in Ginkgo biloba ovules, we performed spatio-temporal expression analyses in seeds at early developing stages, of six candidate gene homologues known in angiosperms: WUSCHEL, AINTEGUMENTA, BELL1, KANADI, UNICORN, and C3HDZip. Surprisingly, the expression patterns of most these ovule homologues indicate that they are not wholly conserved between angiosperms and Ginkgo biloba. Consistent with previous studies on early diverging seedless plant lineages, ferns, lycophytes, and bryophytes, many of these candidate genes are mainly expressed in mega- and micro-sporangia. Through in-depth comparative transcriptome analyses of Ginkgo biloba developing ovules, pollen cones, and megagametophytes we have been able to identify novel genes, likely involved in ovule development. Finally, our expression analyses support the synangial or neo-synangial hypotheses for the origin of the seed, where the sporangium developmental network was likely co-opted and restricted during integument evolution.


Author(s):  
Andrea Scala

In the Armenian dialect of Urmia (Northern Iran), the indicative imperfect displays a very innovating inflection, based on the addition of the morpheme ‘-eɾ’ (properly the imperfect 3s of the verb ‘to beʼ) to the indicative present. This morpheme of ‘remotenessʼ creates opposition between other tenses as well, such as perfect and pluperfect, future and past future. The article deals with the reconstruction of the origin and diffusion of this innovating morpheme in the verbal system of the Armenian dialect of Urmia, focusing both on endogenous morphological dynamics and on the role of language contact with Turkic varieties as a trigger of this morphological change.


2021 ◽  
Vol 118 (19) ◽  
pp. e2023058118
Author(s):  
Caroline Parins-Fukuchi ◽  
Gregory W. Stull ◽  
Stephen A. Smith

Evolutionary biologists have long been fascinated with the episodes of rapid phenotypic innovation that underlie the emergence of major lineages. Although our understanding of the environmental and ecological contexts of such episodes has steadily increased, it has remained unclear how population processes contribute to emergent macroevolutionary patterns. One insight gleaned from phylogenomics is that gene-tree conflict, frequently caused by population-level processes, is often rampant during the origin of major lineages. With the understanding that phylogenomic conflict is often driven by complex population processes, we hypothesized that there may be a direct correspondence between instances of high conflict and elevated rates of phenotypic innovation if both patterns result from the same processes. We evaluated this hypothesis in six clades spanning vertebrates and plants. We found that the most conflict-rich regions of these six clades also tended to experience the highest rates of phenotypic innovation, suggesting that population processes shaping both phenotypic and genomic evolution may leave signatures at deep timescales. Closer examination of the biological significance of phylogenomic conflict may yield improved connections between micro- and macroevolution and increase our understanding of the processes that shape the origin of major lineages across the Tree of Life.


2021 ◽  
Vol 288 (1947) ◽  
Author(s):  
Cris C. Ledón-Rettig

Novel behaviours can spur evolutionary change and sometimes even precede morphological innovation, but the evolutionary and developmental contexts for their origins can be elusive. One proposed mechanism to generate behavioural innovation is a shift in the developmental timing of gene-expression patterns underlying an ancestral behaviour, or molecular heterochrony. Alternatively, novel suites of gene expression, which could provide new contexts for signalling pathways with conserved behavioural functions, could promote novel behavioural variation. To determine the relative contributions of these alternatives to behavioural innovation, I used a species of spadefoot toad, Spea bombifrons . Based on environmental cues, Spea larvae develop as either of two morphs: ‘omnivores' that, like their ancestors, feed on detritus, or ‘carnivores' that are predaceous and cannibalistic. Because all anuran larvae undergo a natural transition to obligate carnivory during metamorphosis, it has been proposed that the novel, predaceous behaviour in Spea larvae represents the accelerated activation of gene networks influencing post-metamorphic behaviours. Based on comparisons of brain transcriptional profiles, my results reject widespread heterochrony as a mechanism promoting the expression of predaceous larval behaviour. They instead suggest that the evolution of this trait relied on novel patterns of gene expression that include components of pathways with conserved behavioural functions.


2021 ◽  
Vol 118 (8) ◽  
pp. e2005063118
Author(s):  
Alejandro Damian-Serrano ◽  
Steven H. D. Haddock ◽  
Casey W. Dunn

Predator specialization has often been considered an evolutionary “dead end” due to the constraints associated with the evolution of morphological and functional optimizations throughout the organism. However, in some predators, these changes are localized in separate structures dedicated to prey capture. One of the most extreme cases of this modularity can be observed in siphonophores, a clade of pelagic colonial cnidarians that use tentilla (tentacle side branches armed with nematocysts) exclusively for prey capture. Here we study how siphonophore specialists and generalists evolve, and what morphological changes are associated with these transitions. To answer these questions, we: a) Measured 29 morphological characters of tentacles from 45 siphonophore species, b) mapped these data to a phylogenetic tree, and c) analyzed the evolutionary associations between morphological characters and prey-type data from the literature. Instead of a dead end, we found that siphonophore specialists can evolve into generalists, and that specialists on one prey type have directly evolved into specialists on other prey types. Our results show that siphonophore tentillum morphology has strong evolutionary associations with prey type, and suggest that shifts between prey types are linked to shifts in the morphology, mode of evolution, and evolutionary correlations of tentilla and their nematocysts. The evolutionary history of siphonophore specialization helps build a broader perspective on predatory niche diversification via morphological innovation and evolution. These findings contribute to understanding how specialization and morphological evolution have shaped present-day food webs.


Author(s):  
Caifei Zhang ◽  
Chien‐Hsun Huang ◽  
Mian Liu ◽  
Yi Hu ◽  
Jose L. Panero ◽  
...  

2020 ◽  
Author(s):  
Caroline Parins-Fukuchi ◽  
Gregory W. Stull ◽  
Stephen A. Smith

AbstractEvolutionary biologists have long been fascinated with the episodes of rapid phenotypic innovation that underlie the emergence of major lineages. Although our understanding of the environmental and ecological contexts of such episodes has steadily increased, it has remained unclear how population processes contribute to emergent macroevolutionary patterns. One insight gleaned from phylogenomics is that phylogenomic conflict, frequently caused by population-level processes, is often rampant during the origin of major lineages. With the understanding that phylogenomic conflict is often driven by complex population processes, we hypothesized that there may be a direct correspondence between areas of high conflict and elevated rates of phenotypic innovation if both patterns result from the same processes. We evaluated this hypothesis in six clades spanning vertebrates and plants. We found that the most conflict-rich regions of these six clades also tended to experience the highest rates of phenotypic innovation, suggesting that population processes shaping both phenotypic and genomic evolution may leave signatures at deep timescales. Closer examination of the biological significance of phylogenomic conflict may yield improved connections between micro- and macroevolution and increase our understanding of the processes that shape the origin of major lineages across the Tree of Life.


2020 ◽  
Vol 30 (13) ◽  
pp. 2645-2648
Author(s):  
Chris D. Whitewoods ◽  
Joseph Cammarata ◽  
Zoe Nemec Venza ◽  
Stephanie Sang ◽  
Ashley D. Crook ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document