closed colony
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 4)

H-INDEX

13
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Anthony D Long ◽  
Alan Barbour ◽  
Phillip N Long ◽  
Vanessa J Cook ◽  
Arundhati Majumder

Although Peromyscus leucopus (deermouse) is not considered a genetic model system, its genus is well suited for addressing several questions of biologist interest, including the genetic bases of longevity, behavior, physiology, adaptation, and its ability to serve as a disease vector. Here we explore a diversity outbred approach for dissecting complex traits in Peromyscus leucopus, a non-traditional genetic model system. We take advantage of a closed colony of deer-mice founded from 38 individuals between 1982 and 1985 and subsequently maintained for 35+ years (~40-60 generations). From 405 low-pass (~1X) short-read sequenced deermice we accurately imputed genotypes at 17,751,882 SNPs. Conditional on observed genotypes for a subset of 297 individuals, simulations were conducted in which a QTL contributes 5% to a complex trait under three different genetic models. The power of either a haplotype- or marker-based statistical test was estimated to be 15-25% to detect the hidden QTL. Although modest, this power estimate is consistent with that of DO/HS mice and rat experiments for an experiment with ~300 individuals. This limitation in QTL detection is mostly associated with the stringent significance threshold required to hold the genome-wide false positive rate low, as in all cases we observe considerable linkage signal at the location of simulated QTL, suggesting a larger panel would exhibit greater power. For the subset of cases where a QTL was detected, localization ability appeared very desirable at ~1-2Mb. We finally carried out a GWAS on a demonstration trait, bleeding time. No tests exceeded the threshold for genome-wide significance, but one of four suggestive regions co-localizes with Von Willebrand factor. Our work suggests that complex traits can be dissected in founders-unknown P. leucopus colony mice in much the same manner as founders-known DO/HS mice and rats, with genotypes obtained from low pass sequencing data. Our results further suggest that the DO/HS approach can be powerfully extended to any system in which a founders-unknown closed colony has been maintained for several dozen generations.


2021 ◽  
Author(s):  
Katelyn Erbeck ◽  
Roderick B. Gagne ◽  
Simona Kraberger ◽  
Elliott S. Chiu ◽  
Melody Roelke-Parker ◽  
...  

Feline leukemia virus (FeLV) is associated with a range of clinical signs in felid species. Differences in disease processes are closely related to genetic variation in the envelope ( env ) region of the genome of six defined subgroups. The primary hosts of FeLV are domestic cats of the Felis genus that also harbor endogenous FeLV (enFeLV) elements stably integrated in their genomes. EnFeLV elements display 86% nucleotide identity to exogenous, horizontally transmitted FeLV (FeLV-A). Variation between enFeLV and FeLV-A is primarily in the long terminal repeat (LTR) and env regions, which potentiates generation of the FeLV-B recombinant subgroup during natural infection. The aim of this study was to examine recombination behavior of exogenous FeLV (exFeLV) and enFeLV in a natural FeLV epizootic. We previously described that of 65 individuals in a closed colony, 32 had productive FeLV-A infection, and 22 of these individuals had detectable circulating FeLV-B. We cloned and sequenced the env gene of FeLV-B, FeLV-A, and enFeLV spanning known recombination breakpoints and examined between 1-13 clones in 22 animals with FeLV-B to assess sequence diversity and recombination breakpoints. Our analysis revealed that FeLV-A circulating in the population, as well as enFeLV env sequences, are highly conserved. We documented many recombination breakpoints resulting in the production of unique FeLV-B genotypes. More than half of the cats harbored more than one FeLV-B variant, suggesting multiple recombination events between enFeLV and FeLV-A. We concluded that FeLV-B was predominantly generated de novo within each host, though we could not definitively rule out horizontal transmission, as nearly all cats harbored FeLV-B sequences that were genetically highly similar to those identified in other individual. This work represents a comprehensive analysis of endogenous-exogenous retroviral interactions with important insights into host-viral interactions that underlie disease pathogenesis in a natural setting. Importance Feline leukemia virus (FeLV) is a felid retrovirus with a variety of disease outcomes. Exogenous FeLV-A is the virus subgroup almost exclusively transmitted between cats. Recombination between FeLV-A and endogenous FeLV analogues in the cat genome may result in emergence of largely replication-defective, but highly virulent subgroups. FeLV-B is formed when the 3’ envelope ( env ) region of endogenous FeLV (enFeLV) recombines with that of the exogenous FeLV (exFeLV) during viral reverse transcription and integration. Both domestic cats and wild relatives of the Felis genus harbor enFeLV, which has been shown to limit FeLV-A disease outcome. However, enFeLV also contributes genetic material to the recombinant FeLV-B subgroup. This study evaluates endogenous-exogenous recombination outcomes in a naturally infected closed-colony of cats to determine mechanisms and risk of endogenous retroviral recombination during exogenous virus exposure that leads to enhanced virulence. While FeLV-A and enFeLV env regions were highly conserved from cat to cat, nearly all individuals with emergent FeLV-B had unique combinations of genotypes, representative of a wide range of recombination sites within env . The findings provide insight into unique recombination patterns for emergence of new pathogens and can be related to similar viruses across species.


2021 ◽  
Author(s):  
Katelyn Erbeck ◽  
Roderick B. Gagne ◽  
Simona Kraberger ◽  
Elliott S. Chiu ◽  
Melody Roelke Parker ◽  
...  

AbstractFeline leukemia virus (FeLV) is associated with a range of clinical signs in felid species. The primary hosts of FeLV are domestic cats of the Felis genus that also harbor endogenous FeLV (enFeLV) elements stably integrated in their genomes. EnFeLV elements display 86% nucleotide identity to exogenous, horizontally transmitted FeLV (FeLV-A). Variation between enFeLV and FeLV-A is primarily in the long terminal repeat (LTR) and env regions, which potentiates generation of FeLV-B recombinant subtypes during natural infection with enhanced virulence. The aim of this study was to examine exogenous FeLV (exFeLV) and enFeLV recombination events in a natural FeLV epizootic. We previously described that of 32 individuals in a closed colony with productive FeLV-A infection, 22 had detectable circulating FeLV-B. We cloned and sequenced the env gene of FeLV-B, FeLV-A, and enFeLV spanning known recombination breakpoints, examining between 1-13 clones per individual to assess sequence diversity and recombination sites. We documented multiple recombination breakpoints resulting in the production of unique FeLV-B genotypes. At least half of the cats harbored more than one FeLV-B variant, and almost all animals had variants similar to those recovered from at least one other individual in the colony. This analysis reveals that FeLV-B is predominantly generated de novo within each host, though horizontal transmission may be inferred based upon FeLV-B sequence identities between individuals. This work represents a comprehensive analysis of endogenous-exogenous retroviral interactions with important insights into host-viral interactions that underlie disease pathogenesis in a natural setting.ImportanceFeline leukemia virus (FeLV) is a felid retrovirus associated with a variety of disease outcomes. Exogenous FeLV-A is the most common horizontally transmitted virus subgroup. Domestic cats (Felis catus) harbor endogenous copies of FeLV (enFeLV) in their genomes. Recombination between FeLV-A and enFeLV may result in emergence of largely replication-defective, but highly virulent recombinant strains. FeLV-B, the most common recombinant form, results when enFeLV env recombines with FeLV-A during FeLV replication. This study evaluated endogenous-exogenous recombination outcomes in a naturally-infected closed colony of domestic cats to determine recombination sites and FeLV-B genotypic heterogeneity associated with enhanced disease virulence. While FeLV-A and enFeLV genotypes were highly conserved, a large number of unique FeLV-B variants were identified in association with predicted recombination hotspots. The findings provide insight into recombination events between viral and host genomes that result in new, and potentially more pathogenic, viral strains.


Diversity ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 483
Author(s):  
Lei Cai ◽  
Miaomiao Hou ◽  
Chunsen Xu ◽  
Zhijun Xia ◽  
Jianwei Wang

The complex genetic architecture of closed colonies during successive passages poses a significant challenge in the understanding of the genetic background. Research on the dynamic changes in genetic structure for the establishment of a new closed colony is limited. In this study, we developed 51 single nucleotide polymorphism (SNP) markers for the rare minnow (Gobiocypris rarus) and conducted genetic diversity and structure analyses in five successive generations of a closed colony using 20 SNPs. The range of mean Ho and He in five generations was 0.4547–0.4983 and 0.4445–0.4644, respectively. No significant differences were observed in the Ne, Ho, and He (p > 0.05) between the five closed colony generations, indicating well-maintained heterozygosity. The F-statistics analysis revealed a relatively stable genetic structure of the closed colony. Furthermore, the genetic distance between the newer and older generations increased with the breeding generations in closed colonies. Our results confirmed previous findings in the same samples using microsatellite markers. The results will be beneficial for establishing genetic variability monitoring criteria and restoration of the wild population of the rare minnow and other laboratory fish.


2014 ◽  
Vol 63 (2) ◽  
pp. 193-204 ◽  
Author(s):  
Shuji Takabayashi ◽  
Shintaro Seto ◽  
Hideki Katoh
Keyword(s):  

2010 ◽  
Vol 59 (2) ◽  
pp. 183-190 ◽  
Author(s):  
Hideki KATOH ◽  
Tetsu NISHIKAWA ◽  
Jiro KIMURA ◽  
Yumika YAMAUCHI ◽  
Shuji TAKABAYASHI

2009 ◽  
Vol 40 (1) ◽  
pp. 8-14 ◽  
Author(s):  
Sara E. Childs-Sanford ◽  
George V. Kollias ◽  
Noha Abou-Madi ◽  
Patrick L. McDonough ◽  
Michael M. Garner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document