initial reactivity
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 8)

H-INDEX

9
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Aristeidis Voliotis ◽  
Mao Du ◽  
Yu Wang ◽  
Yunqi Shao ◽  
M. Rami Alfarra ◽  
...  

Abstract. A comprehensive investigation of the photochemical secondary organic aerosol (SOA) formation and transformation in mixtures of anthropogenic (o-cresol) and biogenic (α-pinene and isoprene) volatile organic compound (VOC) precursors in the presence of NOx and inorganic seed particles was conducted. Initial iso-reactivity was used to enable direct comparison across systems, adjusting the initial reactivity of the systems towards the assumed dominant oxidant (OH). Comparing experiments conducted in single precursor systems at various initial reactivity levels (referenced to a nominal base case VOC reactivity) and their binary and ternary mixtures, we show that the molecular interactions from the mixing of the precursors can be investigated and discuss limitations in their interpretation. The observed average SOA yields in descending order were found for the α-pinene (32 ± 7 %), α-pinene/o-cresol (28 ± 9 %), α-pinene at ½ initial reactivity (21 ± 5 %), α-pinene/isoprene (16 ± 1 %), α-pinene at ⅓ initial reactivity (15 ± 4 %), o-cresol (13 ± 3 %), α-pinene/o-cresol/isoprene (11 ± 4%), o-cresol at ½ initial reactivity (11 ± 3 %), o-cresol/isoprene (6 ± 2 %) and isoprene systems (0 ± 0 %). We find a clear suppression of the SOA yield from α-pinene when it is mixed with isoprene, whilst the addition of isoprene to o-cresol may enhance the mixture’s SOA formation potential, however, the difference was too small to be unequivocal. The α-pinene/o-cresol system yield appeared to be increased compared to that calculated based on the additivity, whilst in the α-pinene/o-cresol/isoprene system the measured and predicted yield were comparable. However, in mixtures where more than one precursor contributes to the SOA mass it is unclear whether changes in the SOA formation potential are attributable to physical or chemical interactions, since the reference basis for the comparison is complex. Online and offline chemical composition and SOA particle volatility, water uptake and “phase” behaviour measurements that were used to interpret the SOA formation and behaviour are introduced and detailed elsewhere.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4332
Author(s):  
Fatemeh Kenari ◽  
Szilárd Molnár ◽  
Pál Perjési

Several biological effects of chalcones have been reported to be associated with their thiol reactivity. In vivo, the reactions can result in the formation of small-molecule or protein thiol adducts. Both types of reactions can play a role in the biological effects of this class of compounds. Progress of the reaction of 4-methyl- and 4-methoxychalcone with glutathione and N-acetylcysteine was studied by the HPLC-UV-VIS method. The reactions were conducted under three different pH conditions. HPLC-MS measurements confirmed the structure of the formed adducts. The chalcones reacted with both thiols under all incubation conditions. The initial rate and composition of the equilibrium mixtures depended on the ratio of the deprotonated form of the thiols. In the reaction of 4-methoxychalcone with N-acetylcysteine under strongly basic conditions, transformation of the kinetic adduct into the thermodynamically more stable one was observed. Addition of S-protonated N-acetylcysteine onto the polar double bonds of the chalcones showed different degrees of diastereoselectivity. Both chalcones showed a Michael-type addition reaction with the ionized and non-ionized forms of the investigated thiols. The initial reactivity of the chalcones and the equilibrium composition of the incubates showed a positive correlation with the degree of ionization of the thiols. Conversions showed systematic differences under each set of conditions. The observed differences can hint at the difference in reported biological actions of 4-methyl- and 4-methoxy-substituted chalcones.


CORROSION ◽  
10.5006/3668 ◽  
2020 ◽  
Author(s):  
Ville Saarimaa ◽  
Aaretti Kaleva ◽  
Erkki Levänen ◽  
Pasi Väisänen ◽  
Antti Markkula

The surface activity of different zinc alloys was evaluated in wet scCO2. The zinc coating surface chemistry governed the corrosion product formation. On zinc and Zn-Al coatings, the Al2O3 layer prevented growth of corrosion products. A Zn-Al-Mg coating showed high initial reactivity due to active Zn-Mg phases. An electrogalvanized coating was very active due to a high ratio of exposed, less dense planes. In a Zn-Fe coating, several Zn-Fe phases were susceptible to wet scCO2 at the same time, triggering the sacrificial effect of Zn. Wet scCO2 is a convenient medium to assess the early-stage corrosion of metal coatings.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4432
Author(s):  
Gum-Sung Ryu ◽  
Sung Choi ◽  
Kyung-Taek Koh ◽  
Gi-Hong Ahn ◽  
Hyeong-Yeol Kim ◽  
...  

This study investigated the hardening process of alkali-activated material (AAM) mortar using calcium sulfoalumiante (CSA) expansive additive (CSA EA), which accelerates the initial reactivity of AAMs, and subsequent changes in ultrasonic pulse velocity (UPV). After the AAM mortar was mixed with three different contents of CSA EA, the setting and modulus of elasticity of the mortar at one day of age, which represent curing steps, were measured. In addition, UPV was used to analyze each curing step. The initial and final setting times of the AAM mortar could be predicted by analyzing the UPV results measured for 14 h. In addition, the dynamic modulus of elasticity calculated using the UPV results for 24 h showed a tendency similar to that of the static modulus of elasticity. The test results showed that the use of CSA EA accelerated the setting of the AAM mortar and increased the modulus of elasticity, and these results could be inferred using UPV. The proposed measurement method can be effective in evaluating the properties of a material that accelerates the initial reactivity.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1523 ◽  
Author(s):  
Arnaud Igor Ndé-Tchoupé ◽  
Rui Hu ◽  
Willis Gwenzi ◽  
Achille Nassi ◽  
Chicgoua Noubactep

Metallic iron (Fe0) has been demonstrated as an excellent material for decentralized safe drinking water provision, wastewater treatment and environmental remediation. An open issue for all these applications is the rational material selection or quality assurance. Several methods for assessing Fe0 quality have been presented, but all of them are limited to characterizing its initial reactivity. The present study investigates H2 evolution in an acidic solution (pH 2.0) as an alternative method, while comparing achieved results to those of uranium removal in quiescent batch experiments at neutral pH values. The unique feature of the H2 evolution experiment is that quantitative H2 production ceased when the pH reached a value of 3.1. A total of twelve Fe0 specimens were tested. The volume of molecular H2 produced by 2.0 g of each Fe0 specimen in 560 mL H2SO4 (0.01 M) was monitored for 24 h. Additionally, the extent of U(VI) (0.084 mM) removal from an aqueous solution (20.0 mL) by 0.1 g of Fe0 was characterized. All U removal experiments were performed at room temperature (22 ± 2 °C) for 14 days. Results demonstrated the difficulty of comparing Fe0 specimens from different sources and confirmed that the elemental composition of Fe0 is not a stand-alone determining factor for reactivity. The time-dependent changes of H2 evolution in H2SO4 confirmed that tests in the neutral pH range just address the initial reactivity of Fe0 materials. In particular, materials initially reacting very fast would experience a decrease in reactivity in the long-term, and this aspect must be incorporated in designing novel materials and sustainable remediation systems. An idea is proposed that could enable the manufacturing of intrinsically long-term efficient Fe0 materials for targeted operations as a function of the geochemistry.


2019 ◽  
Author(s):  
Carter J. Funkhouser

Non-suicidal self-injury is a risk factor for suicidal behavior, particularly in females. Twoprominent theories of suicide suggest that habituation to the psychophysiological aversiveness of NSSI is a mechanism by which NSSI exposure may lead to increased risk for suicide. Several laboratory studies examining the relationship between physiological habituation and suicide attempt history have yielded mixed results, potentially due to their use of broad measures of physiological arousal and/or focus on specific psychopathologies. However, no studies have examined the association between the time course (e.g., habituation, initial reactivity) of responding to aversiveness and NSSI, which may help to elucidate psychophysiological mechanisms of NSSI. Therefore, we examined habituation and initial reactivity to aversiveness (indexed by the time course of acoustic startle reflex, a well-validated measure of defensive responding) in three groups of young adult females – those with a history of NSSI, psychiatric controls matched on potential confounds (e.g., psychopathology, trauma history, demographics), and healthy controls. Results indicated that individuals with a history of NSSI exhibited blunted initial reactivity and marginally slower habituation to aversiveness relative to the two control groups. The NSSI group’s insensitivity to aversiveness may reflect prior psychophysiological habituation, and may be a mechanism through which prior NSSI exposure leads to increased riskfor suicidal behavior.


2019 ◽  
Vol 92 ◽  
pp. 11003 ◽  
Author(s):  
Enza Vitale ◽  
Giacomo Russo ◽  
Dimitri Deneele

In the present paper, the use of alkali activated binders to improve engineering properties of clayey soils is presented as an alternative to traditional binders such as lime or cement. An alkali-activated fly ash and its chemo-physical evolution has been monitored at increasing curing times by means of X-Ray Diffraction and Scanning Electron Microscopy. Alkali-activated binder has been mixed with soil for evaluating the improvement of its mechanical behaviour. One-dimensional compression tests on treated samples have been performed with particular reference to effects induced by binder content and curing time. Test results showed a high initial reactivity of the alkali activated systems promoting formation of new mineralogical phases responsible of the mechanical improvement of the treated soil.


Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 795 ◽  
Author(s):  
Georg Gravogl ◽  
Christian Knoll ◽  
Jan Welch ◽  
Werner Artner ◽  
Norbert Freiberger ◽  
...  

Thermochemical energy storage is considered as an auspicious method for the recycling of medium-temperature waste heat. The reaction couple Mg(OH)2–MgO is intensely investigated for this purpose, suffering so far from limited cycle stability. To overcome this issue, Mg(OH)2, MgCO3, and MgC2O4·2H2O were compared as precursor materials for MgO production. Depending on the precursor, the particle morphology of the resulting MgO changes, resulting in different hydration behavior and cycle stability. Agglomeration of the material during cyclization was identified as main reason for the decreased reactivity. Immersion of the spent material in liquid H2O decomposes the agglomerates restoring the initial reactivity of the material, thus serving as a regeneration step.


Sign in / Sign up

Export Citation Format

Share Document