spike detection
Recently Published Documents


TOTAL DOCUMENTS

359
(FIVE YEARS 60)

H-INDEX

35
(FIVE YEARS 3)

2022 ◽  
pp. 136943322110561
Author(s):  
Xiang Xu ◽  
Zhen-Dong Qian ◽  
Qiao Huang ◽  
Yuan Ren ◽  
Bin Liu

To rate uncertainties within anomaly detection course for large span cable-supported bridges, a probabilistic approach is developed based on confidence interval estimation of extreme value analytics. First, raw signals from structural health monitoring system are pre-processed, including missing data imputation using moving time window mean imputation approach and thermal response separation through multi-resolution wavelet-based method. Then, an energy index is extracted from time domain signals to enhance robust of detection performance. A resampling-based method, namely the bootstrap, is adopted herein for confidence interval estimation. Four confidence levels are defined for the anomaly trend detection in this study, namely 95%, 80%, 50%, and 20%. Finally, the effectiveness of the proposed anomaly trend detection methodology is validated by using in-situ cable force measurements from the Nanjing Dashengguan Yangtze River Bridge. As a result, the four-level anomaly detection triggers are determined by using the confidence interval estimation based on cable force measurements in 2007, which are 58,671, 48,862, 42,499 and 39,035, respectively. Subsequently, three cases are presented, which are spike detection, overloading vehicle detection and snow disaster detection. Through the spike detection, it is verified that energy index is capable to tolerate signal spikes. Three overloading events are simulated to conduct overloading vehicle detections. As a result, the three overloading events are detected successfully associated with different confidences. Snow disaster is detected with a more than 80% confidence based on the field measurements during the snow storm time window.


2022 ◽  
Author(s):  
Daria Kleeva ◽  
Gurgen Soghoyan ◽  
Ilia Komoltsev ◽  
Mikhail Sinkin ◽  
Alexei Ossadtchi

Epilepsy is a widely spread neurological disease, whose treatment often requires resection of the pathological cortical tissue. Interictal spike analysis observed in the non-invasively collected EEG or MEG data offers an attractive way to localize epileptogenic cortical structures for surgery planning purposes. Interictal spike detection in lengthy multichannel data is a daunting task that is still often performed manually. This frequently limits such an analysis to a small portion of the data which renders the appropriate risks of missing the potentially epileptogenic region. While a plethora of automatic spike detection techniques have been developed each with its own assumptions and limitations, non of them is ideal and the best results are achieved when the output of several automatic spike detectors are combined. This is especially true in the low signal-to-noise ratio conditions. To this end we propose a novel biomimetic approach for automatic spike detection based on a constrained mixed spline machinery that we dub as fast parametric curve matching (FPCM). Using the peak-wave shape parametrization, the constrained parametric morphological model is constructed and convolved with the observed multichannel data to efficiently determine mixed spline parameters corresponding to each time-point in the dataset. Then the logical predicates that directly map to verbalized text-book like descriptions of the expected interictal event morphology allow us to accomplish the spike detection task. The results of simulations mimicking typical low SNR scenario show the robustness and high ROC AUC values of the FPCM method as compared to the spike detection performed using more conventional approaches such as wavelet decomposition, template matching or simple amplitude thresholding. Applied to the real MEG and EEG data from the human patients and to rat ECoG data, the FPCM technique demonstrates reliable detection of the interictal events and localization of epileptogenic zones concordant with independent conclusions made by the epileptologist. Since the FPCM is computationally light, tolerant to high amplitude artifacts and flexible to accommodate verbalized descriptions of the arbitrary target morphology, it may complement the existing arsenal of means for analysis of noisy interictal datasets.


Seizure ◽  
2021 ◽  
Author(s):  
E.E.M. Reus ◽  
F.M.E. Cox ◽  
J.G. van Dijk ◽  
G.H. Visser

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7441
Author(s):  
Sajid Ullah ◽  
Michael Henke ◽  
Narendra Narisetti ◽  
Klára Panzarová ◽  
Martin Trtílek ◽  
...  

Automated analysis of small and optically variable plant organs, such as grain spikes, is highly demanded in quantitative plant science and breeding. Previous works primarily focused on the detection of prominently visible spikes emerging on the top of the grain plants growing in field conditions. However, accurate and automated analysis of all fully and partially visible spikes in greenhouse images renders a more challenging task, which was rarely addressed in the past. A particular difficulty for image analysis is represented by leaf-covered, occluded but also matured spikes of bushy crop cultivars that can hardly be differentiated from the remaining plant biomass. To address the challenge of automated analysis of arbitrary spike phenotypes in different grain crops and optical setups, here, we performed a comparative investigation of six neural network methods for pattern detection and segmentation in RGB images, including five deep and one shallow neural network. Our experimental results demonstrate that advanced deep learning methods show superior performance, achieving over 90% accuracy by detection and segmentation of spikes in wheat, barley and rye images. However, spike detection in new crop phenotypes can be performed more accurately than segmentation. Furthermore, the detection and segmentation of matured, partially visible and occluded spikes, for which phenotypes substantially deviate from the training set of regular spikes, still represent a challenge to neural network models trained on a limited set of a few hundreds of manually labeled ground truth images. Limitations and further potential improvements of the presented algorithmic frameworks for spike image analysis are discussed. Besides theoretical and experimental investigations, we provide a GUI-based tool (SpikeApp), which shows the application of pre-trained neural networks to fully automate spike detection, segmentation and phenotyping in images of greenhouse-grown plants.


2021 ◽  
Author(s):  
Bryan Yoo ◽  
Jessica Griffiths ◽  
Sarkis Mazmanian
Keyword(s):  

Protocol for spike detection of GCaMP6F imaging data used in Yoo et al 2021


2021 ◽  
Vol 2113 (1) ◽  
pp. 012038
Author(s):  
Mingzheng Yuan

Abstract This research designs an absolute-value detector with the function of threshold comparing. Specifically, it is an essential device in the spike detection of the brain-machine interface. The optimized design in the research can accomplish the main functions in spike detection and has good performance in both delay and energy consumption. It comes up with two types of design at the beginning. To make the design reliable and comprehensive, it decides to discuss both methods in this paper. The first design is using a full adder, multiplexer and comparator. The concept of its logic circuit is adding the logic one to the input when the given input data is negative, keeping the original information as the given input data is positive. To achieve the function of adding, this study chooses the full adders. The primary purpose of using multiplexers is to select from the processed input and original input, and the choice depends on the most significant bit (MSB) of the input data. To compare the absolute value of the input data with a given threshold, this research used a multi-bit comparator. The second design is based on the fundamental algorithms of calculating total numbers. It indicates that this study can operate it with the threshold value through a subtractor when the input is negative. On the contrary, an adder can be used when the information is positive. Based on the concept of logic optimization, this study chooses to use the only subtractors, and it just needs to focus on the borrow bit, which can indicate the more significant number. By connecting the MSB of the input with the subtractors through XOR gates, the selection can be achieved without using any multiplexer. In the process of removing and replacing the devices, it reached the optimization of the design. Then, this paper compared the minimum delay by calculating each stage’s size and finding that the second design is better. Finally, based on the dual design, this essay computed the energy consumption in the circuit and implement VDD optimization to obtain the minimum energy.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hermine Biermé ◽  
Camille Constant ◽  
Anne Duittoz ◽  
Christine Georgelin

Abstract We present in this paper a global methodology for the spike detection in a biological context of fluorescence recording of GnRH-neurons calcium activity. For this purpose we first propose a simple stochastic model that could mimic experimental time series by considering an autoregressive AR(1) process with a linear trend and specific innovations involving spiking times. Estimators of parameters with asymptotic normality are established and used to set up a statistical test on estimated innovations in order to detect spikes. We compare several procedures and illustrate on biological data the performance of our procedure.


2021 ◽  
Vol 13 (16) ◽  
pp. 3095
Author(s):  
Jianqing Zhao ◽  
Xiaohu Zhang ◽  
Jiawei Yan ◽  
Xiaolei Qiu ◽  
Xia Yao ◽  
...  

Deep-learning-based object detection algorithms have significantly improved the performance of wheat spike detection. However, UAV images crowned with small-sized, highly dense, and overlapping spikes cause the accuracy to decrease for detection. This paper proposes an improved YOLOv5 (You Look Only Once)-based method to detect wheat spikes accurately in UAV images and solve spike error detection and miss detection caused by occlusion conditions. The proposed method introduces data cleaning and data augmentation to improve the generalization ability of the detection network. The network is rebuilt by adding a microscale detection layer, setting prior anchor boxes, and adapting the confidence loss function of the detection layer based on the IoU (Intersection over Union). These refinements improve the feature extraction for small-sized wheat spikes and lead to better detection accuracy. With the confidence weights, the detection boxes in multiresolution images are fused to increase the accuracy under occlusion conditions. The result shows that the proposed method is better than the existing object detection algorithms, such as Faster RCNN, Single Shot MultiBox Detector (SSD), RetinaNet, and standard YOLOv5. The average accuracy (AP) of wheat spike detection in UAV images is 94.1%, which is 10.8% higher than the standard YOLOv5. Thus, the proposed method is a practical way to handle the spike detection in complex field scenarios and provide technical references for field-level wheat phenotype monitoring.


Sign in / Sign up

Export Citation Format

Share Document