synechocystis pcc 6803
Recently Published Documents


TOTAL DOCUMENTS

206
(FIVE YEARS 11)

H-INDEX

39
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Paul V Sauer ◽  
Maria Agustina Dominguez-Martin ◽  
Henning Kirst ◽  
Markus Sutter ◽  
David Bina ◽  
...  

The phycobilisome is an elaborate antenna that is responsible for light-harvesting in cyanobacteria and red-algae. This large macromolecular complex captures incident sunlight and transfers the energy via a network of pigment molecules called bilins to the photosynthetic reaction centers. The phycobilisome of the model organism Synechocystis PCC 6803 consists of a core to which six rods are attached but its detailed molecular architecture and regulation in response to environmental conditions is not well understood. Here we present cryo-electron microscopy structures of the 6.2 MDa phycobilisome from Synechocystis PCC 6803 resolved at 2.1 Å (rods) to 2.7 Å (core), revealing three distinct conformations, two previously unknown. We found that two of the rods are mobile and can switch conformation within the complex, revealing a layer of regulation not described previously. In addition, we found a novel linker protein in the structure, that may represent a long-sought subunit that tethers the phycobilisome to the thylakoid membrane. Finally, we show how excitation energy is transferred within the phycobilisome and correlate our structures with known spectroscopic properties. Together, our results provide detailed insights into the biophysical underpinnings of cyanobacterial light harvesting and lay the foundation for bioengineering of future phycobilisome variants and artificial light harvesting systems.


2021 ◽  
Author(s):  
Parveen Akhtar ◽  
Avratanu Biswas ◽  
Fanny Balog-Vig ◽  
Ildiko Domonkos ◽  
László Kovács ◽  
...  

In cyanobacteria, phycobilisomes serve as peripheral light-harvesting complexes of the two photosystems, extending their antenna size and the wavelength range of photons available for photosynthesis. The abundance of phycobilisomes, the number of phycobiliproteins they contain, and their light-harvesting function are dynamically adjusted in response to the physiological conditions. Phycobilisomes are also thought to be involved in state transitions that maintain the excitation balance between the two photosystems. Unlike its eukaryotic counterpart, PSI is trimeric in many cyanobacterial species and the physiological significance of this is not well understood. Here we compared the composition and light-harvesting function of phycobilisomes in cells of Synechocystis PCC 6803, which has primarily trimeric PSI, and the ?psaL mutant unable to form trimers. We also investigated a mutant additionally lacking the PsaJ and PsaF subunits of PSI, as PsaF has been proposed to facilitate interaction with phycobilisomes. Both strains with monomeric PSI accumulated significantly less phycocyanin (which constitutes the phycobilisome rods) per chlorophyll, while the allophycocyanin content was unchanged compared to WT. These data show that cells with monomeric PSI have higher abundance of smaller phycobilisomes. Steady-state and time-resolved fluorescence spectroscopy at room temperature and 77 K revealed that PSII receives more energy from the phycobilisomes at the expense of PSI in cells with monomeric PSI, regardless of the presence of PsaF. Taken together, these results show that the trimeric organization of PSI is advantageous for efficient and balanced excitation energy transfer from phycobilisomes in Synechocystis.


2021 ◽  
Vol 478 (7) ◽  
pp. 1333-1346
Author(s):  
Parveen Akhtar ◽  
Avratanu Biswas ◽  
László Kovács ◽  
Nathan Nelson ◽  
Petar H. Lambrev

Photosystem I is the most efficient photosynthetic enzyme with structure and composition highly conserved among all oxygenic phototrophs. Cyanobacterial Photosystem I is typically associated into trimers for reasons that are still debated. Almost universally, Photosystem I contains a number of long-wavelength-absorbing ‘red’ chlorophylls (Chls), that have a sizeable effect on the excitation energy transfer and trapping. Here we present spectroscopic comparison of trimeric Photosystem I from Synechocystis PCC 6803 with a monomeric complex from the ΔpsaL mutant and a ‘minimal’ monomeric complex ΔFIJL, containing only subunits A, B, C, D, E, K and M. The quantum yield of photochemistry at room temperature was the same in all complexes, demonstrating the functional robustness of this photosystem. The monomeric complexes had a reduced far-red absorption and emission equivalent to the loss of 1.5–2 red Chls emitting at 710–715 nm, whereas the longest-wavelength emission at 722 nm was not affected. The picosecond fluorescence kinetics at 77 K showed spectrally and kinetically distinct red Chls in all complexes and equilibration times of up to 50 ps. We found that the red Chls are not irreversible traps at 77 K but can still transfer excitations to the reaction centre, especially in the trimeric complexes. Structure-based Förster energy transfer calculations support the assignment of the lowest-energy state to the Chl pair B37/B38 and the trimer-specific red Chl emission to Chls A32/B7 located at the monomer–monomer interface. These intermediate-energy red Chls facilitate energy migration from the lowest-energy states to the reaction centre.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 500
Author(s):  
Corinne Cassier-Chauvat ◽  
Victoire Blanc-Garin ◽  
Franck Chauvat

Cyanobacteria are widely-diverse, environmentally crucial photosynthetic prokaryotes of great interests for basic and applied science. Work to date has focused mostly on the three non-nitrogen fixing unicellular species Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002, which have been selected for their genetic and physiological interests summarized in this review. Extensive “omics” data sets have been generated, and genome-scale models (GSM) have been developed for the rational engineering of these cyanobacteria for biotechnological purposes. We presently discuss what should be done to improve our understanding of the genotype-phenotype relationships of these models and generate robust and predictive models of their metabolism. Furthermore, we also emphasize that because Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002 represent only a limited part of the wide biodiversity of cyanobacteria, other species distantly related to these three models, should be studied. Finally, we highlight the need to strengthen the communication between academic researchers, who know well cyanobacteria and can engineer them for biotechnological purposes, but have a limited access to large photobioreactors, and industrial partners who attempt to use natural or engineered cyanobacteria to produce interesting chemicals at reasonable costs, but may lack knowledge on cyanobacterial physiology and metabolism.


2020 ◽  
Author(s):  
Sandeesha Kodru ◽  
László Sass ◽  
Priyanka Patil ◽  
Milán Szabó ◽  
Imre Vass

2020 ◽  
Vol 124 (39) ◽  
pp. 8504-8515
Author(s):  
Anton Khmelnitskiy ◽  
Hila Toporik ◽  
Yuval Mazor ◽  
Ryszard Jankowiak

2019 ◽  
Vol 143 ◽  
pp. 243-251 ◽  
Author(s):  
Emilia Neag ◽  
Anamaria Iulia Török ◽  
Oana Cadar ◽  
Vanda Băbălău – Fuss ◽  
Cecilia Roman

Inorganics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 76 ◽  
Author(s):  
Elia Barchi ◽  
Francesco Musiani

InrS (internal nickel-responsive sensor) is a transcriptional regulator found in cyanobacteria that represses the transcription of the nickel exporter NrsD in the apo form and de-represses expression of the exporter upon Ni(II) binding. Although a crystal structure of apo-InrS from Synechocystis PCC 6803 has been reported, no structure of the protein with metal ions bound is available. Here we report the results of a computational study aimed to reconstruct the metal binding site by taking advantage of recent X-ray absorption spectroscopy (XAS) data and to envisage the structural rearrangements occurring upon Ni(II) binding. The modelled Ni(II) binding site shows a square planar geometry consistent with experimental data. The structural details of the conformational changes occurring upon metal binding are also discussed in the framework of trying to rationalize the different affinity of the apo- and holo-forms of the protein for DNA.


Sign in / Sign up

Export Citation Format

Share Document