scholarly journals Anaerobic peroxisomes in Entamoeba histolytica metabolize myo-inositol

2021 ◽  
Vol 17 (11) ◽  
pp. e1010041
Author(s):  
Zdeněk Verner ◽  
Vojtěch Žárský ◽  
Tien Le ◽  
Ravi Kumar Narayanasamy ◽  
Petr Rada ◽  
...  

Entamoeba histolytica is believed to be devoid of peroxisomes, like most anaerobic protists. In this work, we provided the first evidence that peroxisomes are present in E. histolytica, although only seven proteins responsible for peroxisome biogenesis (peroxins) were identified (Pex1, Pex6, Pex5, Pex11, Pex14, Pex16, and Pex19). Targeting matrix proteins to peroxisomes is reduced to the PTS1-dependent pathway mediated via the soluble Pex5 receptor, while the PTS2 receptor Pex7 is absent. Immunofluorescence microscopy showed that peroxisomal markers (Pex5, Pex14, Pex16, Pex19) are present in vesicles distinct from mitosomes, the endoplasmic reticulum, and the endosome/phagosome system, except Pex11, which has dual localization in peroxisomes and mitosomes. Immunoelectron microscopy revealed that Pex14 localized to vesicles of approximately 90–100 nm in diameter. Proteomic analyses of affinity-purified peroxisomes and in silico PTS1 predictions provided datasets of 655 and 56 peroxisomal candidates, respectively; however, only six proteins were shared by both datasets, including myo-inositol dehydrogenase (myo-IDH). Peroxisomal NAD-dependent myo-IDH appeared to be a dimeric enzyme with high affinity to myo-inositol (Km 0.044 mM) and can utilize also scyllo-inositol, D-glucose and D-xylose as substrates. Phylogenetic analyses revealed that orthologs of myo-IDH with PTS1 are present in E. dispar, E. nutalli and E. moshkovskii but not in E. invadens, and form a monophyletic clade of mostly peroxisomal orthologs with free-living Mastigamoeba balamuthi and Pelomyxa schiedti. The presence of peroxisomes in E. histolytica and other archamoebae breaks the paradigm of peroxisome absence in anaerobes and provides a new potential target for the development of antiparasitic drugs.

2007 ◽  
Vol 204 (5) ◽  
pp. 1083-1093 ◽  
Author(s):  
Hye-Ryun Kang ◽  
Chun Geun Lee ◽  
Robert J. Homer ◽  
Jack A. Elias

Semaphorin (SEMA) 7A regulates neuronal and immune function. In these studies, we tested the hypothesis that SEMA 7A is also a critical regulator of tissue remodeling. These studies demonstrate that SEMA 7A and its receptors, plexin C1 and β1 integrins, are stimulated by transforming growth factor (TGF)-β1 in the murine lung. They also demonstrate that SEMA 7A plays a critical role in TGF-β1–induced fibrosis, myofibroblast hyperplasia, alveolar remodeling, and apoptosis. TGF-β1 stimulated SEMA 7A via a largely Smad 3–independent mechanism and stimulated SEMA 7A receptors, matrix proteins, CCN proteins, fibroblast growth factor 2, interleukin 13 receptor components, proteases, antiprotease, and apoptosis regulators via Smad 2/3–independent and SEMA 7A–dependent mechanisms. SEMA 7A also played an important role in the pathogenesis of bleomycin-induced pulmonary fibrosis. TGF-β1 and bleomycin also activated phosphatidylinositol 3-kinase (PI3K) and protein kinase B (PKB)/AKT via SEMA 7A–dependent mechanisms, and PKB/AKT inhibition diminished TGF-β1–induced fibrosis. These observations demonstrate that SEMA 7A and its receptors are induced by TGF-β1 and that SEMA 7A plays a central role in a PI3K/PKB/AKT-dependent pathway that contributes to TGF-β1–induced fibrosis and remodeling. They also demonstrate that the effects of SEMA 7A are not specific for transgenic TGF-β1, highlighting the importance of these findings for other fibrotic stimuli.


Author(s):  
Femke C. C. Klouwer ◽  
Kim D. Falkenberg ◽  
Rob Ofman ◽  
Janet Koster ◽  
Démi van Gent ◽  
...  

Peroxisome biogenesis disorders within the Zellweger spectrum (PBD-ZSDs) are most frequently associated with the c.2528G>A (p.G843D) mutation in the PEX1 gene (PEX1-G843D), which results in impaired import of peroxisomal matrix proteins and, consequently, defective peroxisomal functions. A recent study suggested that treatment with autophagy inhibitors, in particular hydroxychloroquine, would be a potential therapeutic option for PBD-ZSD patients carrying the PEX1-G843D mutation. Here, we studied whether autophagy inhibition by chloroquine, hydroxychloroquine and 3-methyladenine indeed can improve peroxisomal functions in four different cell types with the PEX1-G843D mutation, including primary patient cells. Furthermore, we studied whether autophagy inhibition may be the mechanism underlying the previously reported improvement of peroxisomal functions by L-arginine in PEX1-G843D cells. In contrast to L-arginine, we observed no improvement but a worsening of peroxisomal metabolic functions and peroxisomal matrix protein import by the autophagy inhibitors, while genetic knock-down of ATG5 and NBR1 in primary patient cells resulted in only a minimal improvement. Our results do not support the use of autophagy inhibitors as potential treatment for PBD-ZSD patients, whereas L-arginine remains a therapeutically promising compound.


2008 ◽  
Vol 155 (1) ◽  
pp. 105-112 ◽  
Author(s):  
Mamiko Hirose ◽  
James D. Reimer ◽  
Michio Hidaka ◽  
Shoichiro Suda

Viruses ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 98 ◽  
Author(s):  
Hao Chang ◽  
Lowela Siarot ◽  
Ryosuke Matsuura ◽  
Chieh-Wen Lo ◽  
Hirotaka Sato ◽  
...  

Viral protein R (Vpr) is an accessory protein found in various primate lentiviruses, including human immunodeficiency viruses type 1 and 2 (HIV-1 and HIV-2) as well as simian immunodeficiency viruses (SIVs). Vpr modulates many processes during viral lifecycle via interaction with several of cellular targets. Previous studies showed that HIV-1 Vpr strengthened degradation of Mini-chromosome Maintenance Protein10 (MCM10) by manipulating DCAF1-Cul4-E3 ligase in proteasome-dependent pathway. However, whether Vpr from other primate lentiviruses are also associated with MCM10 degradation and the ensuing impact remain unknown. Based on phylogenetic analyses, a panel of primate lentiviruses Vpr/x covering main virus lineages was prepared. Distinct MCM10 degradation profiles were mapped and HIV-1, SIVmus and SIVrcm Vprs induced MCM10 degradation in proteasome-dependent pathway. Colocalization and interaction between MCM10 with these Vprs were also observed. Moreover, MCM10 2-7 interaction region was identified as a determinant region susceptible to degradation. However, MCM10 degradation did not alleviate DNA damage response induced by these Vpr proteins. MCM10 degradation by HIV-1 Vpr proteins was correlated with G2/M arrest, while induction of apoptosis and oligomerization formation of Vpr failed to alter MCM10 proteolysis. The current study demonstrated a distinct interplay pattern between primate lentiviruses Vpr proteins and MCM10.


2020 ◽  
Vol 117 (10) ◽  
pp. 5364-5375 ◽  
Author(s):  
Chihiro Sarai ◽  
Goro Tanifuji ◽  
Takuro Nakayama ◽  
Ryoma Kamikawa ◽  
Kazuya Takahashi ◽  
...  

Nucleomorphs are relic endosymbiont nuclei so far found only in two algal groups, cryptophytes and chlorarachniophytes, which have been studied to model the evolutionary process of integrating an endosymbiont alga into a host-governed plastid (organellogenesis). However, past studies suggest that DNA transfer from the endosymbiont to host nuclei had already ceased in both cryptophytes and chlorarachniophytes, implying that the organellogenesis at the genetic level has been completed in the two systems. Moreover, we have yet to pinpoint the closest free-living relative of the endosymbiotic alga engulfed by the ancestral chlorarachniophyte or cryptophyte, making it difficult to infer how organellogenesis altered the endosymbiont genome. To counter the above issues, we need novel nucleomorph-bearing algae, in which endosymbiont-to-host DNA transfer is on-going and for which endosymbiont/plastid origins can be inferred at a fine taxonomic scale. Here, we report two previously undescribed dinoflagellates, strains MGD and TGD, with green algal endosymbionts enclosing plastids as well as relic nuclei (nucleomorphs). We provide evidence for the presence of DNA in the two nucleomorphs and the transfer of endosymbiont genes to the host (dinoflagellate) genomes. Furthermore, DNA transfer between the host and endosymbiont nuclei was found to be in progress in both the MGD and TGD systems. Phylogenetic analyses successfully resolved the origins of the endosymbionts at the genus level. With the combined evidence, we conclude that the host–endosymbiont integration in MGD/TGD is less advanced than that in cryptophytes/chrorarachniophytes, and propose the two dinoflagellates as models for elucidating organellogenesis.


2017 ◽  
Author(s):  
Guifre Torruella ◽  
Xavier Grau-Bove ◽  
David Moreira ◽  
Sergey A Karpov ◽  
John Burns ◽  
...  

Aphelids are poorly known phagotrophic parasites of algae whose life cycle and morphology resemble those of the widely diverse parasitic rozellids (Cryptomycota, Rozellomycota). In previous phylogenetic analyses of RNA polymerase and rRNA genes, aphelids and rozellids formed a monophyletic group together with the extremely reduced parasitic Microsporidia, named Opisthosporidia, which was sister to Fungi. However, the statistical support for that group was always moderate. We generated the first transcriptome data for one aphelid species, Paraphelidium tribonemae. In-depth multi-gene phylogenomic analyses using various protein datasets place aphelids as the closest relatives of Fungi to the exclusion of rozellids and Microsporidia. In contrast with the comparatively reduced Rozella allomycis genome, we infer a rich, free-living-like aphelid proteome, including cellulases likely involved in algal cell-wall penetration, enzymes involved in chitin biosynthesis and several metabolic pathways. Our results suggest that Fungi evolved from a complex aphelid-like ancestor that lost phagotrophy and became osmotrophic.


2020 ◽  
Vol 8 (8) ◽  
pp. 1229
Author(s):  
Herbert J. Santos ◽  
Yoko Chiba ◽  
Takashi Makiuchi ◽  
Saki Arakawa ◽  
Yoshitaka Murakami ◽  
...  

Mitochondrial matrix proteins synthesized in the cytosol often contain amino (N)-terminal targeting sequences (NTSs), or alternately internal targeting sequences (ITSs), which enable them to be properly translocated to the organelle. Such sequences are also required for proteins targeted to mitochondrion-related organelles (MROs) that are present in a few species of anaerobic eukaryotes. Similar to other MROs, the mitosomes of the human intestinal parasite Entamoeba histolytica are highly degenerate, because a majority of the components involved in various processes occurring in the canonical mitochondria are either missing or modified. As of yet, sulfate activation continues to be the only identified role of the relic mitochondria of Entamoeba. Mitosomes influence the parasitic nature of E. histolytica, as the downstream cytosolic products of sulfate activation have been reported to be essential in proliferation and encystation. Here, we investigated the position of the targeting sequence of one of the mitosomal matrix enzymes involved in the sulfate activation pathway, ATP sulfurylase (AS). We confirmed by immunofluorescence assay and subcellular fractionation that hemagluttinin (HA)-tagged EhAS was targeted to mitosomes. However, its ortholog in the δ-proteobacterium Desulfovibrio vulgaris, expressed as DvAS-HA in amoebic trophozoites, indicated cytosolic localization, suggesting a lack of recognizable mitosome targeting sequence in this protein. By expressing chimeric proteins containing swapped sequences between EhAS and DvAS in amoebic cells, we identified the ITSs responsible for mitosome targeting of EhAS. This observation is similar to other parasitic protozoans that harbor MROs, suggesting a convergent feature among various MROs in favoring ITS for the recognition and translocation of targeted proteins.


2007 ◽  
Vol 177 (2) ◽  
pp. 289-303 ◽  
Author(s):  
Tong Guo ◽  
Christopher Gregg ◽  
Tatiana Boukh-Viner ◽  
Pavlo Kyryakov ◽  
Alexander Goldberg ◽  
...  

We define the dynamics of spatial and temporal reorganization of the team of proteins and lipids serving peroxisome division. The peroxisome becomes competent for division only after it acquires the complete set of matrix proteins involved in lipid metabolism. Overloading the peroxisome with matrix proteins promotes the relocation of acyl-CoA oxidase (Aox), an enzyme of fatty acid β-oxidation, from the matrix to the membrane. The binding of Aox to Pex16p, a membrane-associated peroxin required for peroxisome biogenesis, initiates the biosynthesis of phosphatidic acid and diacylglycerol (DAG) in the membrane. The formation of these two lipids and the subsequent transbilayer movement of DAG initiate the assembly of a complex between the peroxins Pex10p and Pex19p, the dynamin-like GTPase Vps1p, and several actin cytoskeletal proteins on the peroxisomal surface. This protein team promotes membrane fission, thereby executing the terminal step of peroxisome division.


1998 ◽  
Vol 18 (5) ◽  
pp. 2789-2803 ◽  
Author(s):  
Vladimir I. Titorenko ◽  
Richard A. Rachubinski

ABSTRACT Mutations in the SEC238 and SRP54 genes of the yeast Yarrowia lipolytica not only cause temperature-sensitive defects in the exit of the precursor form of alkaline extracellular protease and of other secretory proteins from the endoplasmic reticulum and in protein secretion but also lead to temperature-sensitive growth in oleic acid-containing medium, the metabolism of which requires the assembly of functionally intact peroxisomes. The sec238A andsrp54KO mutations at the restrictive temperature significantly reduce the size and number of peroxisomes, affect the import of peroxisomal matrix and membrane proteins into the organelle, and significantly delay, but do not prevent, the exit of two peroxisomal membrane proteins, Pex2p and Pex16p, from the endoplasmic reticulum en route to the peroxisomal membrane. Mutations in the PEX1 and PEX6 genes, which encode members of the AAA family of N-ethylmaleimide-sensitive fusion protein-like ATPases, not only affect the exit of precursor forms of secretory proteins from the endoplasmic reticulum but also prevent the exit of the peroxisomal membrane proteins Pex2p and Pex16p from the endoplasmic reticulum and cause the accumulation of an extensive network of endoplasmic reticulum membranes. None of the peroxisomal matrix proteins tested associated with the endoplasmic reticulum in sec238A,srp54KO, pex1-1, and pex6KO mutant cells. Our data provide evidence that the endoplasmic reticulum is required for peroxisome biogenesis and suggest that inY. lipolytica, the trafficking of some membrane proteins, but not matrix proteins, to the peroxisome occurs via the endoplasmic reticulum, results in their glycosylation within the lumen of the endoplasmic reticulum, does not involve transport through the Golgi, and requires the products encoded by the SEC238, SRP54,PEX1, and PEX6 genes.


Sign in / Sign up

Export Citation Format

Share Document