boreal ecosystem productivity simulator
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 3)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 13 (20) ◽  
pp. 4075
Author(s):  
Bin Chen ◽  
Xuehe Lu ◽  
Shaoqiang Wang ◽  
Jing M. Chen ◽  
Yang Liu ◽  
...  

In terrestrial ecosystems, leaves are aggregated into different spatial structures and their spatial distribution is non-random. Clumping index (CI) is a key canopy structural parameter, characterizing the extent to which leaf deviates from the random distribution. To assess leaf clumping effects on global terrestrial ET, we used a global leaf area index (LAI) map and the latest version of global CI product derived from MODIS BRDF data as well as the Boreal Ecosystem Productivity Simulator (BEPS) to estimate global terrestrial ET. The results show that global terrestrial ET in 2015 was 511.9 ± 70.1 mm yr−1 for Case I, where the true LAI and CI are used. Compared to this baseline case, (1) global terrestrial ET is overestimated by 4.7% for Case II where true LAI is used ignoring clumping; (2) global terrestrial ET is underestimated by 13.0% for Case III where effective LAI is used ignoring clumping. Among all plant functional types (PFTs), evergreen needleleaf forests were most affected by foliage clumping for ET estimation in Case II, because they are most clumped with the lowest CI. Deciduous broadleaf forests are affected by leaf clumping most in Case III because they have both high LAI and low CI compared to other PFTs. The leaf clumping effects on ET estimation in both Case II and Case III is robust to the errors in major input parameters. Thus, it is necessary to consider clumping effects in the simulation of global terrestrial ET, which has considerable implications for global water cycle research.


2020 ◽  
Vol 12 (3) ◽  
pp. 1084
Author(s):  
Xia Meng ◽  
Huasheng Huang ◽  
Luo Guo ◽  
Dan Wang ◽  
Rui Han ◽  
...  

The Red List of Ecosystems, proposed by the International Union for Conservation of Nature can determine the status of ecosystems for biodiversity conservation. In this study, we applied the Red List of Ecosystems Categories and Criteria 2.0 with its four major criteria (A, B, C, and D) to assess twelve dominant ecosystems in the Xilin River Basin, a representative grassland-dominating area in China. We employed Geographical Information Systems and remote sensing to process the obtained satellite products from the years 2000 to 2015, and generated indicators for biological processes and degradation of environment with boreal ecosystem productivity simulator. The results show that all twelve ecosystems in the Xilin River Basin confront varying threats: Artemisia frigida grassland and Festuca ovina grassland face the highest risk of collapse, sharing an endangered status; Filifolium sibiricum meadow grassland and Leymus chinensis grassland have a least concern status, while the remaining eight ecosystems display a vulnerable status. This study overcomes the limits of data deficiency by introducing the boreal ecosystem productivity simulator to simulate biological processes and the plant–environment interaction. It sheds light on further application of the Red List of Ecosystems, and bridges the research gap and promote local ecosystems conservation in China.


2014 ◽  
Vol 11 (10) ◽  
pp. 2583-2599 ◽  
Author(s):  
Y. Liu ◽  
Y. Zhou ◽  
W. Ju ◽  
S. Wang ◽  
X. Wu ◽  
...  

Abstract. In recent years, China's terrestrial ecosystems have experienced frequent droughts. How these droughts have affected carbon sequestration by the terrestrial ecosystems is still unclear. In this study, the process-based Boreal Ecosystem Productivity Simulator (BEPS) model, driven by remotely sensed vegetation parameters, was employed to assess the effects of droughts on net ecosystem productivity (NEP) of terrestrial ecosystems in China from 2000 to 2011. Droughts of differing severity, as indicated by a standard precipitation index (SPI), hit terrestrial ecosystems in China extensively in 2001, 2006, 2009, and 2011. The national total annual NEP exhibited the slight decline of −11.3 Tg C yr−2 during the aforementioned years of extensive droughts. The NEP reduction ranged from 61.1 Tg C yr−1 to 168.8 Tg C yr−1. National and regional total NEP anomalies were correlated with the annual mean SPI, especially in Northwest China, North China, Central China, and Southwest China. The reductions in annual NEP in 2001 and 2011 might have been caused by a larger decrease in annual gross primary productivity (GPP) than in annual ecosystem respiration (ER). The reductions experienced in 2009 might be due to a decrease in annual GPP and an increase in annual ER, while reductions in 2006 could stem from a larger increase in ER than in GPP. The effects of droughts on NEP lagged up to 3–6 months, due to different responses of GPP and ER. In eastern China, where is humid and warm, droughts have predominant and short-term lagged influences on NEP. In western regions, cold and arid, the drought effects on NEP were relatively weaker but prone to lasting longer.


2013 ◽  
Vol 10 (11) ◽  
pp. 17469-17509 ◽  
Author(s):  
Y. B. Liu ◽  
Y. L. Zhou ◽  
W. M. Ju ◽  
S. Q. Wang ◽  
X. C. Wu ◽  
...  

Abstract. In recent years, droughts have frequently hit China's terrestrial ecosystems. How these droughts affected carbon sequestration by China's terrestrial ecosystems is still unclear. In this study, the process-based Boreal Ecosystem Productivity Simulator (BEPS) model, driven by remotely sensed vegetation parameters, was employed to assess the effects of droughts on net ecosystem productivity (NEP) of terrestrial ecosystems in China for the period from 2000 to 2011. Different categories of droughts, as indicated by a standard precipitation index (SPI), extensively hit terrestrial ecosystems in China, particularly in 2001, 2006, 2009 and 2011. The national total NEP exhibited a slight decline of −11.3 Tg C yr−2 during the study period, mainly due to large reductions of NEP in typical drought-hit years 2001, 2006, 2009 and 2011, ranging from 61.1 Tg C yr−1 to 168.8 Tg C yr−1. National and regional total NEP anomalies were correlated with corresponding annual mean SPI, especially in Northwest China, North China, Central China, and Southwest China. In drought years, the reductions of NEP might be caused by a larger decrease in gross primary productivity (GPP) than in respiration (RE) (2001 and 2011), a decrease in GPP and an increase in RE (2009), or a larger increase in RE than in GPP (2006). Droughts had lagged effects of up to 3–6 months on NEP due to different reactions of GPP and RE to droughts. In east humid and warm parts of China, droughts have predominant and short-term lagged influences on NEP. In western cold and arid regions, the effects of droughts on NEP were relatively weaker and might last for a longer period of time.


2000 ◽  
Vol 30 (6) ◽  
pp. 939-947 ◽  
Author(s):  
B D Amiro ◽  
J M Chen ◽  
Jinjun Liu

Recent modelling results indicate that forest fires and other disturbances determine the magnitude of the Canadian forest carbon balance. The regeneration of post-fire vegetation is key to the recovery of net primary productivity (NPP) following fire. We geographically co-registered pixels classed using the Boreal Ecosystem Productivity Simulator, a process-based model with AVHRR (advanced very-high resolution radiometer) satellite estimates of leaf-area index and land cover type, with polygons from a recent database of large Canadian fires. NPP development with time since fire was derived for the first 15 years following the disturbance in the boreal and taiga ecozones. About 7 × 106 ha were analysed for over 500 fires occurring between 1980 and 1994. NPP increases linearly through this period, at rates that depend on ecoregion. A longer data set for the Boreal Plains ecozone of Alberta shows that NPP levels off at about 20-30 years and remains constant for 60 years. The NPP trajectories can be used as spatial averages to support models of forest carbon balance and succession through the most fire-prone regions of Canada.


Sign in / Sign up

Export Citation Format

Share Document