Medical Data and Mathematically Modeled Implicit Surface Real-Rime Visualization in Web Browsers

Author(s):  
Qi Zhang

Raycasting can display volumetric medical data in fine details and reveal crucial inner imaging information, while implicit surface is able to effectively model complex objects with high flexibility, combining these two rendering modalities together will provide comprehensive information of the scene and has wide applications in surgical simulation, image-guided intervention, and medical training. However, medical data rendering is based on texture depth at every sampling point, while mathematically modeled implicit surfaces do not have geometric information in texture space. It is a challenging task to visualize both physical scalar data and virtual implicit surfaces simultaneously. To address this issue, in this paper, we present a new dual-casting ray-based double modality data rendering algorithm and web-based software platform to visualize volumetric medical data and implicit surface in the same browser. The algorithm runs on graphics processing unit and casts two virtual rays from camera to each pixel on the display panel, where one ray travels through the mathematically defined scene for implicit surface rendering and the other one passes the 3D texture space for volumetric data visualization. The proposed algorithm can detect voxel depth information and algebraic surface models along each casting ray and dynamically enhance the visualized dual-modality data with the improved lighting model and transparency adjustment function. Moreover, auxiliary innovative techniques are also presented to enhance the shading and rendering features of interest. Our software platform can seamlessly visualize volumetric medical data and implicit surfaces in the same web browser over Internet.

2002 ◽  
Vol 2 (4) ◽  
pp. 277-284 ◽  
Author(s):  
Yutaka Ohtake ◽  
Alexander G. Belyaev

A new method for improving polygonizations of implicit surfaces with sharp features is proposed. The method is based on the observation that, given an implicit surface with sharp features, a triangle mesh whose triangles are tangent to the implicit surface at certain inner triangle points gives a better approximation of the implicit surface than the standard Marching Cubes mesh [Lorensen, W.E., and Cline, H.E., 1987, Computer Graphics (Proceedings of SIGGRAPH ’87), 21(3), pp. 163–169] (in our experiments we use VTK Marching Cubes [Schroeder, W., Martin, K., and Lorensen, W., 1998, The Visualization Toolkit: An Object-Oriented Approach to 3-D Graphics, Prentice Hall]). First, given an initial triangle mesh, its dual mesh composed of the triangle centroids is considered. Then the dual mesh is modified such that its vertices are placed on the implicit surface and the mesh dual to the modified dual mesh is considered. Finally the vertex positions of that “double dual” mesh are optimized by minimizing a quadratic energy measuring a deviation of the mesh normals from the implicit surface normals computed at the vertices of the modified dual mesh. In order to achieve an accurate approximation of fine surface features, these basic steps are combined with adaptive mesh subdivision and curvature-weighted vertex resampling. The proposed method outperforms approaches based on the mesh evolution paradigm in speed and accuracy.


2011 ◽  
Vol 346 ◽  
pp. 259-265
Author(s):  
Xiao Ming Liu ◽  
Lei Yang ◽  
Qiang Hu ◽  
Jun Hai Yong

Point projection on an implicit surface is essential for the geometric modeling and graphics applications of it. This paper presents a method for computing the principle curvatures and principle directions of an implicit surface. Using the principle curvatures and principle directions, we construct a torus patch to approximate the implicit surface locally. The torus patch is second order osculating to the implicit surface. By taking advantage of the approximation torus patch, this paper develops a second order geometric iterative algorithm for point projection on the implicit surface. Experiments illustrate the efficiency and less dependency on initial values of our algorithm.


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. S249-S259 ◽  
Author(s):  
Tong Zhou ◽  
Wenyi Hu ◽  
Jieyuan Ning

Most existing [Formula: see text]-compensated reverse time migration ([Formula: see text]-RTM) algorithms are based on pseudospectral methods. Because of the global nature of pseudospectral operators, these methods are not ideal for efficient parallelization, implying that they may suffer from high computational cost and inefficient memory usage for large-scale industrial problems. In this work, we reported a novel [Formula: see text]-RTM algorithm — the multistage optimized [Formula: see text]-RTM method. This [Formula: see text]-RTM algorithm uses a finite-difference method to compensate the amplitude and the phase simultaneously by uniquely combining two techniques: (1) a negative [Formula: see text] method for amplitude compensation and (2) a multistage dispersion optimization technique for phase correction. To prevent high-frequency noise from growing exponentially and ruining the imaging results, we apply a finite impulse response low-pass filter using the Kaiser window. The theoretical analyses and numerical experiments demonstrate that this [Formula: see text]-RTM algorithm precisely recovers the decayed amplitude and corrects the distorted phase caused by seismic attenuation effects, and hence produces higher resolution subsurface images with the correct structural depth information. This new method performs best in the frequency range of 10–70 Hz. Compared with pseudospectral [Formula: see text]-RTM methods, this [Formula: see text]-RTM approach offers nearly identical imaging quality. Based on local numerical differential operators, this [Formula: see text]-RTM method is very suitable for parallel computing and graphic processing unit implementation, an important feature for large 3D seismic surveys.


2021 ◽  
Author(s):  
Alejandro Emerio Alfonso Oviedo

This work targets one real world application of stereo vision technology: the computation of the depth information of a moving object in a scene. It uses a stereo camera set that captures the stereoscopic view of the scene. Background subtraction algorithm is used to detect the moving object, supported by the recursive filter of first order as updating method. Mean filter is the pre-processing stage, combined with frame downscaling to reduce the background storage. After thresholding the background subtraction result, the binary image is sent to the software processing unit to compute the centroid of the moving area, and the measured disparity, estimate the disparity by Kalman algorithm, and finally calculate the depth from the estimated disparity. The implementation successfully achieves the objectives of resolution 720p, at 28.68 fps and maximum permissible depth error of ±4 cm (1.066 %) for a depth measuring range from 25 cm to 375 cm.


Author(s):  
Masatomo Inui ◽  
Kouhei Nishimiya ◽  
Nobuyuki Umezu

Abstract Clearance is a basic parameter in the design of mechanical products, generally specified as the distance between two shape elements, for example, the width of a slot. This definition is unsuitable for evaluating the clearance during assembly or manufacturing tasks, where the depth information is also critical. In this paper, we propose a novel definition of clearance for the surface of three-dimensional objects. Unlike the typical methods used to define clearance, the proposed method can simultaneously handle the relationship between the width and depth in the clearance, and thus, obtain an intuitive understanding regarding the assembly and manufacturing capability of a product. Our definition is based on the accessibility cone of a point on the object’s surface; further, the peak angle of the accessibility cone corresponds to the clearance at this point. A computation method of the clearance is presented and the results of its application are demonstrated. Our method uses the rendering function of a graphics processing unit to compute the clearance. A large computation time necessary for the analysis is considered as a problem regarding the practical use of this clearance definition.


2013 ◽  
Vol 59 (3) ◽  
pp. 237-244 ◽  
Author(s):  
Christopher Chiu ◽  
Zenon Chaczko

Abstract The enhancement of surgical simulation tools is an important research study, to assist in the assessment and feedback of medical training practice. In this research, the Spring Tensor Model (STEM) has been used for laparoscopic end-effector navigation through obstacles and high-risk areas. The modelling of the surgical trainer as part of the laparoscopic simulator seeks to emulate the physical environment as a virtualised representation in the integrated infrastructure. Combining sensor network framework paradigms to a surgical knowledge-based construct demonstrates how STEMcan enhance medical practice. The architectural hybridisation of the training framework has enabled the adaptation of STEM modelling techniques for a simulated laparoscopic training methodology. The primary benefit of the architecture is that this integration strategy has resulted in a seamless transition of the heuristic framework to be applied to surgical training.


2010 ◽  
Author(s):  
Dan Mueller

This article describes an ITK implementation of the “cuberille” method for poloygonization of implicit surfaces. The method operates by dividing the surface into a number of small cubes called cuberilles. Each cuberille is centered at a pixel lying on the iso-surface and then quadrilaterals are generated for each face. The original approach is improved by projecting the vertices of each cuberille onto the implicit surface, smoothing the typical block-like resultant mesh. Source code and examples are provided to demonstrate the method.


2005 ◽  
Vol 17 (3) ◽  
pp. 327-334 ◽  
Author(s):  
Seiichi Ikeda ◽  
◽  
Fumihito Arai ◽  
Toshio Fukuda ◽  
Makoto Negoro ◽  
...  

We propose an in vitro patient-specific anatomical model of the human cerebral artery and its simulation of endovascular intervention, a potent treatment modality for cerebrovascular diseases. Our proposed model reproduces the 3-dimensional vasculature lumen, using computed tomography (CT) and magnetic resonance (MR) fluoroscopic information, within a thin artery-like membranous configuration having material properties close to arterial tissue. This cerebral arterial model reproduces an exceedingly realistic surgical feel, dynamic vascular deformation and, other important aspects involving endovascular intervention, realizing a highly realistic surgical simulation. We also propose another vasculature model that reproduces the subarachnoid space around the cerebral arteries. This version simulates endovascular intervention realistically. The model is compatible with current major imaging modalities such as CT, MR, and transcranial Doppler (TDC), and should provide effective platforms for applications, such as diagnosis, surgical planning, medical training, hemodynamic analysis and medical system development and evaluation, especially surgical robots.


Designs ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 16 ◽  
Author(s):  
Ye Guo ◽  
Ke Liu ◽  
Zeyun Yu

Tissue repairing has been the ultimate goal of surgery, especially with the emergence of reconstructive medicine. A large amount of research devoted to exploring innovative porous scaffold designs, including homogeneous and inhomogeneous ones, have been presented in the literature. The triply periodic minimal surface has been a versatile source of biomorphic structure design due to its smooth surface and high interconnectivity. Nonetheless, many 3D models are often rendered in the form of triangular meshes for its efficiency and convenience. The requirement of regular hexahedral meshes then becomes one of limitations of the triply periodic minimal surface method. In this paper, we make a successful attempt to generate microscopic pore structures using tetrahedral implicit surfaces. To replace the conventional Cartesian coordinates, a new coordinates system is built based on the perpendicular distances between a point and the tetrahedral faces to capture the periodicity of a tetrahedral implicit surface. Similarly to the triply periodic minimal surface, a variety of tetrahedral implicit surfaces, including P-, D-, and G-surfaces are defined by combinations of trigonometric functions. We further compare triply periodic minimal surfaces with tetrahedral implicit surfaces in terms of shape, porosity, and mean curvature to discuss the similarities and differences of the two surfaces. An example of femur scaffold construction is provided to demonstrate the detailed process of modeling porous architectures using the tetrahedral implicit surface.


Sign in / Sign up

Export Citation Format

Share Document