golgi ribbon
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 13)

H-INDEX

20
(FIVE YEARS 2)

Author(s):  
Luis F.S. Mendes ◽  
Mariana R.B. Batista ◽  
Emanuel Kava ◽  
Lucas Bleicher ◽  
Mariana C. Micheletto ◽  
...  

2021 ◽  
Author(s):  
Giovanna Benvenuto ◽  
Maria Ina Arnone ◽  
Francesco Ferraro

AbstractThe Golgi apparatus plays a central role as a processing and sorting station along the secretory pathway. In multicellular organisms, this organelle displays two structural organizations, whereby its functional subunits, the mini-stacks, are either dispersed throughout the cell or linked into a centralized structure, called Golgi “ribbon”. The Golgi ribbon is considered to be a feature typical of vertebrate cells. Here we report that this is not the case. We show that sea urchin embryonic cells assemble Golgi ribbons during early development. Sea urchins are deuterostomes, the bilaterian animal clade to which chordates, and thus vertebrates, also belong.Far from being a structural innovation of vertebrates, the Golgi ribbon therefore appears to be an ancient cellular feature evolved before the split between echinoderms and chordates. Evolutionary conservation of the ribbon architecture surmises that it must play fundamental roles in the biology of deuterostomes.


2021 ◽  
Author(s):  
Karen Page ◽  
Jessica McCormack ◽  
Mafalda Lopes-da-Silva ◽  
Francesca Patella ◽  
Kimberley Harrison-Lavoie ◽  
...  

Vertebrate cells display a specific Golgi apparatus architecture, known as the ribbon, where the functional subunits, the mini-stacks, are linked into a tri-dimensional network. The importance of the ribbon architecture is underscored by evidence of its disruption in a host of diseases, but just how it relates to the biological Golgi functions remains unclear. Are all the connections between mini-stacks functionally equal? Is the local structure of the ribbon of functional importance? These are difficult questions to address, due to the lack of a secretory cargo providing a quantifiable readout of the functional output of ribbon-embedded mini-stacks. Endothelial cells produce rod-shaped secretory granules, the Weibel-Palade bodies (WPB), whose von Willebrand Factor (VWF) cargo is central to hemostasis. In these cells, the Golgi apparatus exerts a dual control on WPB size at both mini-stack and ribbon levels. Mini-stack dimensions delimit the size of VWF boluses while the ribbon architecture allows their linear co-packaging at the trans-Golgi network generating WPBs of different lengths. This Golgi/WPB size relationship lends itself to mathematical analysis. Here, different ribbon structures were modeled and their predicted effects on WPB size distribution compared to the ground truth of experimental data. Strikingly, the best-fitting model describes a Golgi ribbon made by linked subunits corresponding to differentially functioning monomer and dimer mini-stacks. These results raise the intriguing possibility that the fine-grained structure of the Golgi ribbon is more complex than previously thought.


2021 ◽  
Author(s):  
luis felipe santos mendes ◽  
Mariana R B Batista ◽  
Emanuel Kava ◽  
Lucas Bleicher ◽  
Mariana C Micheletto ◽  
...  

The Golgi complex is a membranous organelle located in the heart of the eukaryotic secretory pathway. A subfamily of the Golgi matrix proteins, called GRASPs, are key players in the stress-induced unconventional secretion, the Golgi dynamics during mitosis/apoptosis, and Golgi ribbon formation. The Golgi ribbon is vertebrate-specific and correlates with the appearance of two GRASP paralogs (GRASP55/GRASP65) and two coiled-coil Golgins (GM130/Golgin45), which interact with each other in vivo. Although essential for the Golgi ribbon formation and the increase in Golgi structural complexity, the molecular details leading to their appearance only in this subphylum are still unknown. Moreover, despite the new functionalities supported by the GRASP paralogy, little is known about the structural and evolutionary differences between these paralogues. In this context, we used ancestor sequence reconstruction and several biophysical/biochemical approaches to assess the evolution of the GRASP structure, flexibility, and how they started anchoring their Golgin partners. Our data showed that the Golgins appeared in evolution and were anchored by the single GRASP ancestor before gorasp gene duplication and divergence in Metazoans. After the gorasp divergence, variations inside the GRASP binding pocket determined which paralogue would recruit each Golgin partner (GRASP55 with Golgin45 and GRASP65 with GM130). These interactions are responsible for the protein's specific Golgi locations and the appearance of the Golgi ribbon. We also suggest that the capacity of GRASPs to form supramolecular structures is a long-standing feature, which likely affects GRASP's participation as a trigger of the stress-induced secretory pathway.


2021 ◽  
Vol 220 (5) ◽  
Author(s):  
Christopher G. Burd
Keyword(s):  

Cisternae of the Golgi apparatus adhere to each other to form stacks, which are aligned side by side to form the Golgi ribbon. Two proteins, GRASP65 and GRASP55, previously implicated in stacking of cisternae, are shown to be required for the formation of the Golgi ribbon.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 503
Author(s):  
Jaakko Saraste ◽  
Kristian Prydz

Coronaviruses (CoVs) assemble by budding into the lumen of the intermediate compartment (IC) at the endoplasmic reticulum (ER)-Golgi interface. However, why CoVs have chosen the IC as their intracellular site of assembly and how progeny viruses are delivered from this compartment to the extracellular space has remained unclear. Here we address these enigmatic late events of the CoV life cycle in light of recently described properties of the IC. Of particular interest are the emerging spatial and functional connections between IC elements and recycling endosomes (REs), defined by the GTPases Rab1 and Rab11, respectively. The establishment of IC-RE links at the cell periphery, around the centrosome and evidently also at the noncompact zones of the Golgi ribbon indicates that—besides traditional ER-Golgi communication—the IC also promotes a secretory process that bypasses the Golgi stacks, but involves its direct connection with the endocytic recycling system. The initial confinement of CoVs to the lumen of IC-derived large transport carriers and their preferential absence from Golgi stacks is consistent with the idea that they exit cells following such an unconventional route. In fact, CoVs may share this pathway with other intracellularly budding viruses, lipoproteins, procollagen, and/or protein aggregates experimentally introduced into the IC lumen.


2020 ◽  
Vol 220 (1) ◽  
Author(s):  
Yijun Zhang ◽  
Joachim Seemann

GRASP55 and GRASP65 have been implicated in stacking of Golgi cisternae and lateral linking of stacks within the Golgi ribbon. However, RNAi or gene knockout approaches to dissect their respective roles have often resulted in conflicting conclusions. Here, we gene-edited GRASP55 and/or GRASP65 with a degron tag in human fibroblasts, allowing for induced rapid degradation by the proteasome. We show that acute depletion of either GRASP55 or GRASP65 does not affect the Golgi ribbon, while chronic degradation of GRASP55 disrupts lateral connectivity of the ribbon. Acute double depletion of both GRASPs coincides with the loss of the vesicle tethering proteins GM130, p115, and Golgin-45 from the Golgi and compromises ribbon linking. Furthermore, GRASP55 and/or GRASP65 is not required for maintaining stacks or de novo assembly of stacked cisternae at the end of mitosis. These results demonstrate that both GRASPs are dispensable for Golgi stacking but are involved in maintaining the integrity of the Golgi ribbon together with GM130 and Golgin-45.


2020 ◽  
Author(s):  
Risa Matsuoka ◽  
Masateru Miki ◽  
Sonoko Mizuno ◽  
Yurina Ito ◽  
Atsushi Suzuki

AbstractThe Golgi apparatus plays important roles in organizing the asymmetric microtubule network essential for polarized vesicle transport. The Golgi-associated coiled-coil protein MTCL1 is crucially involved in Golgi functioning by interconnecting and stabilizing microtubules on the Golgi membrane through its N- and C-terminal microtubule-binding domains. Here, we report the presence of a mammalian paralog of MTCL1, named MTCL2, lacking the N-terminal microtubule-binding domain. MTCL2 localizes to the Golgi membrane through the N-terminal region and directly binds microtubules through the conserved C-terminal domain without promoting microtubule stabilization. Knockdown experiments demonstrated essential roles of MTCL2 in accumulating MTs around the Golgi and regulating the Golgi ribbon structure. In vitro wound healing assays further suggested a possible intriguing activity of MTCL2 in integrating the centrosomal and Golgi-associated microtubules around the Golgi ribbon, thus supporting directional migration. Altogether, the present results demonstrate that cells utilize two members of the MTCL protein family to differentially regulate the Golgi-associated microtubules for controlling cell polarity.


2020 ◽  
Author(s):  
Yijun Zhang ◽  
Joachim Seemann

AbstractGRASP65 and GRASP55 have been implicated in stacking of Golgi cisternae and lateral linking of stacks within the Golgi ribbon. However, loss of gene function approaches by RNAi or gene knockout to dissect their respective roles often resulted in conflicting conclusions. Here, we gene-edited GRASP55 and/or GRASP65 with a degron tag in human fibroblasts, allowing for the induced rapid degradation by the proteasome. We show that acute depletion of either GRASP55 or GRASP65 does not affect the Golgi ribbon, while chronic degradation of GRASP55 disrupts lateral connectivity of the Golgi ribbon. Acute double depletion of both GRASPs coincides with the loss of the vesicle tethering proteins GM130, p115 and Golgin-45 from the Golgi and compromises ribbon linking. Furthermore, neither GRASP55 and/or GRASP65 are required for maintaining stacks or de novo assembly of stacked cisternae at the end of mitosis. These results demonstrate that both GRASPs are dispensable for Golgi stacking, but are involved in maintaining the integrity of Golgi ribbon together with GM130 and Golgin-45.


2020 ◽  
Vol 48 (1) ◽  
pp. 245-256 ◽  
Author(s):  
Inmaculada Ayala ◽  
Fabiola Mascanzoni ◽  
Antonino Colanzi

The Golgi complex (GC) has an essential role in the processing and sorting of proteins and lipids. The GC of mammalian cells is composed of stacks of cisternae connected by membranous tubules to create a continuous network, the Golgi ribbon, whose maintenance requires several core and accessory proteins. Despite this complex structural organization, the Golgi apparatus is highly dynamic, and this property becomes particularly evident during mitosis, when the ribbon undergoes a multistep disassembly process that allows its correct partitioning and inheritance by the daughter cells. Importantly, alterations of the Golgi structure are associated with a variety of physiological and pathological conditions. Here, we review the core mechanisms and signaling pathways involved in both the maintenance and disassembly of the Golgi ribbon, and we also report on the signaling pathways that connect the disassembly of the Golgi ribbon to mitotic entry and progression.


Sign in / Sign up

Export Citation Format

Share Document