synaptic neurotransmission
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 23)

H-INDEX

21
(FIVE YEARS 3)

Author(s):  
Oleg Ya. Shatursky ◽  
Alexander P. Demchenko ◽  
Ihor Panas ◽  
Natalia Krisanova ◽  
Natalia Pozdnyakova ◽  
...  

2021 ◽  
Author(s):  
Aleksandra Kaliszewska ◽  
Joseph Allison ◽  
Tarik-Tarkan Col ◽  
Christopher Shaw ◽  
Natalia Arias

AbstractA hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) with synaptic dysfunction identified as an early pathological hallmark. Although TDP-43 pathology and overt neurodegeneration are largely absent from the cerebellum, the pathological hallmarks of RNA foci and dipeptide repeat protein (DPR) inclusions are most abundant. Here, we present a systematic literature search in the databases of PubMed, Scopus, Embase, Web of Science and Science Direct up until March 5, 2021, which yielded 19,515 publications. Following the exclusion criteria, 72 articles were included having referred to C9orf72, synapses and the cerebellum. Meta-analyses were conducted on studies which reported experimental and control groups with means and standard deviations extracted from figures using the online tool PlotDigitizer. This revealed dendritic defects (P = 0.03), reduced C9orf72 in human patients (P = 0.005) and DPR-related neuronal loss (P = 0.0006) but no neuromuscular junction abnormalities (P = 0.29) or cerebellar neuronal loss (P = 0.23). Our results suggest that dendritic arborisation defects, synaptic gene dysregulation and altered synaptic neurotransmission may drive cerebellar synaptic dysfunction in C9-ALS/FTD. In this review, we discuss how the chronological appearance of the different pathological hallmarks alters synaptic integrity which may have profound implications for disease progression. We conclude that a reduction in C9orf72 protein levels combined with the accumulation of RNA foci and DPRs act synergistically to drive C9 synaptopathy in the cerebellum of C9-ALS/FTD patients.


2021 ◽  
Author(s):  
Jimmy Holder ◽  
Kaifang Pang ◽  
Michel Weiwer ◽  
Kihoon Han ◽  
Wei Wang ◽  
...  

Abstract While the contributions of some genes to neuropsychiatric disorders are clear, the downstream neuronal effects are poorly understood. Over-expression of SHANK3, which encodes a key synaptic protein, causes neuropsychiatric phenotypes in humans and manic-like behavior in mice providing an opportunity to interrogate the role of SHANK3 in a subset of neurons that might underlie the manic-like behavior. Herein, we describe Shank3’s critical role in D2 dopamine receptor (D2dr) neurons and show that Shank3 overexpression causes increased synaptic neurotransmission in D2dr, but not D1dr, expressing striatal medium spiny neurons. Either pharmacologic D2dr inhibition or genetic normalization of Shank3 abundance in D2-neurons ameliorates manic-like behaviors. Integrating bioinformatic analyses of Shank3’s striatal interactome, D1 and D2 dopamine receptor binding proteins, and single-cell RNA-seq datasets, we demonstrate a functional relationship between Shank3 and the D2dr—but not the D1dr. Thus, while Shank3 is over-expressed in both D1 and D2 dopamine receptor expressing striatal neurons, D2 neuronal dysfunction causes manic-like behaviors.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jessica C. Barron ◽  
Emily P. Hurley ◽  
Matthew P. Parsons

Huntington disease (HD) is a monogenic disease that results in a combination of motor, psychiatric and cognitive symptoms. HD is caused by a CAG trinucleotide repeat expansion in the huntingtin (HTT) gene, which results in the production of a pathogenic mutant HTT protein (mHTT). Although there is no cure at present for HD, a number of RNA-targeting therapies have recently entered clinical trials which aim to lower mHTT production through the use of antisense oligonucleotides (ASOs) and RNAi. However, many of these treatment strategies are non-selective in that they cannot differentiate between non-pathogenic wild type HTT (wtHTT) and the mHTT variant. As HD patients are already born with decreased levels of wtHTT, these genetic therapies may result in critically low levels of wtHTT. The consequence of wtHTT reduction in the adult brain is currently under debate, and here we argue that wtHTT loss is not well-tolerated at the synaptic level. Synaptic dysfunction is an extremely sensitive measure of subsequent cell death, and is known to precede neurodegeneration in numerous brain diseases including HD. The present review focuses on the prominent role of wtHTT at the synapse and considers the consequences of wtHTT loss on both pre- and postsynaptic function. We discuss how wtHTT is implicated in virtually all major facets of synaptic neurotransmission including anterograde and retrograde transport of proteins to/from terminal buttons and dendrites, neurotransmitter release, endocytic vesicle recycling, and postsynaptic receptor localization and recycling. We conclude that wtHTT presence is essential for proper synaptic function.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Peng Li ◽  
Jin Xu ◽  
Huanhuan Gu ◽  
Hua Peng ◽  
You Yin ◽  
...  

Abstract Background Memantine, a low- to moderate-affinity uncompetitive N-methyl-D-aspartate receptor antagonist, has been shown to improve cognitive functions in animal models of Alzheimer’s disease (AD). Here we treated APP/PS1 AD mice with a therapeutic dose of memantine (20 mg/kg/day) and examined its underlying mechanisms in ameliorating cognitive defects. Methods Using behavioral, electrophysiological, optogenetic and morphology approaches to explore how memantine delay the pathogenesis of AD. Results Memantine significantly improved the acquisition in Morris water maze (MWM) in APP/PS1 mice without affecting the speed of swimming. Furthermore, memantine enhanced EC to CA1 synaptic neurotransmission and promoted dendritic spine regeneration of EC neurons that projected to CA1. Conclusions Our study reveals the underlying mechanism of memantine in the treatment of AD mice.


2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i21-i21
Author(s):  
Kathryn Taylor ◽  
Tara Barron ◽  
Griffin Hartmann ◽  
Helena Zhang ◽  
Alexa Hui ◽  
...  

Abstract Pediatric high-grade gliomas (pHGG) are a devastating group of diseases that urgently require novel therapeutic options. We have previously demonstrated that pHGGs directly synapse onto neurons and the subsequent tumor cell depolarization, mediated by calcium-permeable AMPA channels, promotes their proliferation. The regulatory mechanisms governing these postsynaptic connections are unknown. Here, we investigated the role of BDNF-TrkB signaling in modulating the plasticity of the malignant synapse. BDNF ligand activation of its canonical receptor, TrkB (which is encoded for by the gene NTRK2), has been shown to be one important modulator of synaptic regulation in the normal setting. Electrophysiological recordings of glioma cell membrane properties, in response to acute neurotransmitter stimulation, demonstrate in an inward current resembling AMPA receptor (AMPAR) mediated excitatory neurotransmission. Extracellular BDNF increases the amplitude of this glutamate-induced tumor cell depolarization and this effect is abrogated in NTRK2 knockout glioma cells. Upon examining tumor cell excitability using in situ calcium imaging, we found that BDNF increases the intensity of glutamate-evoked calcium transients in GCaMP6s expressing glioma cells. Western blot analysis indicates the tumors AMPAR properties are altered downstream of BDNF induced TrkB activation in glioma. We find that BDNF-TrkB signaling promotes neuron-to-glioma synaptogenesis as measured by high-resolution confocal and electron microscopy in culture and tumor xenografts. Our analysis of published pHGG transcriptomic datasets, together with brain slice conditioned medium experiments in culture, indicate the tumor microenvironment as the chief source of BDNF ligand. Disruption of the BDNF-TrkB pathway in patient-derived orthotopic glioma xenograft models, both genetically and pharmacologically, results in an increased overall survival and reduced tumor proliferation rate. These findings suggest that gliomas leverage mechanisms of plasticity to modulate the excitatory channels involved in synaptic neurotransmission and they reveal the potential to target the regulatory components of glioma circuit dynamics as a therapeutic strategy for these lethal cancers.


2021 ◽  
pp. 0271678X2199617
Author(s):  
Narayan D Soni ◽  
Akila Ramesh ◽  
Dipak Roy ◽  
Anant B Patel

Alzheimer’s disease (AD) is a very common neurodegenerative disorder. Although a majority of the AD cases are sporadic, most of the studies are conducted using transgenic models. Intracerebroventricular (ICV) administered streptozotocin (STZ) animals have been used to explore mechanisms in sporadic AD. In this study, we have investigated memory and neurometabolism of ICV-STZ-administered C57BL6/J mice. The neuronal and astroglial metabolic activity was measured in 1H-[13C]-NMR spectrum of cortical and hippocampal tissue extracts of mice infused with [1,6-13C2]glucose and [2-13C]acetate, respectively. STZ-administered mice exhibited reduced (p = 0.00002) recognition index for memory. The levels of creatine, GABA, glutamate and NAA were reduced (p ≤ 0.04), while that of myo-inositol was increased (p < 0.05) in STZ-treated mice. There was a significant (p ≤ 0.014) reduction in aspartate-C3, glutamate-C4/C3, GABA-C2 and glutamine-C4 labeling from [1,6-13C2]glucose. This resulted in decreased rate of glucose oxidation in the cerebral cortex (0.64 ± 0.05 vs. 0.77 ± 0.05 µmol/g/min, p = 0.0008) and hippocampus (0.60 ± 0.04 vs. 0.73 ± 0.07 µmol/g/min, p = 0.001) of STZ-treated mice, due to similar reductions of glucose oxidation in glutamatergic and GABAergic neurons. Additionally, reduced glutamine-C4 labeling points towards compromised synaptic neurotransmission in STZ-treated mice. These data suggest that the ICV-STZ model exhibits neurometabolic deficits typically observed in AD, and its utility in understanding the mechanism of sporadic AD.


Author(s):  
Maria Andres-Alonso ◽  
Michael R. Kreutz ◽  
Anna Karpova

AbstractThe complex morphology of neurons, the specific requirements of synaptic neurotransmission and the accompanying metabolic demands create a unique challenge for proteostasis. The main machineries for neuronal protein synthesis and degradation are localized in the soma, while synaptic junctions are found at vast distances from the cell body. Sophisticated mechanisms must, therefore, ensure efficient delivery of newly synthesized proteins and removal of faulty proteins. These requirements are exacerbated at presynaptic sites, where the demands for protein turnover are especially high due to synaptic vesicle release and recycling that induces protein damage in an intricate molecular machinery, and where replacement of material is hampered by the extreme length of the axon. In this review, we will discuss the contribution of the two major pathways in place, autophagy and the endolysosomal system, to presynaptic protein turnover and presynaptic function. Although clearly different in their biogenesis, both pathways are characterized by cargo collection and transport into distinct membrane-bound organelles that eventually fuse with lysosomes for cargo degradation. We summarize the available evidence with regard to their degradative function, their regulation by presynaptic machinery and the cargo for each pathway. Finally, we will discuss the interplay of both pathways in neurons and very recent findings that suggest non-canonical functions of degradative organelles in synaptic signalling and plasticity.


Author(s):  
Lucas Henriques Viscardi ◽  
Danilo Oliveira Imparato ◽  
Maria Cátira Bortolini ◽  
Rodrigo Juliani Siqueira Dalmolin

Abstract The origin of nervous systems is a main theme in biology and its mechanisms are largely underlied by synaptic neurotransmission. One problem to explain synapse establishment is that synaptic orthologs are present in multiple aneural organisms. We questioned how the interactions among these elements evolved and to what extent it relates to our understanding of the nervous systems complexity. We identified the human neurotransmission gene network based on genes present in GABAergic, glutamatergic, serotonergic, dopaminergic, and cholinergic systems. The network comprises 321 human genes, 83 of which act exclusively in the nervous system. We reconstructed the evolutionary scenario of synapse emergence by looking for synaptic orthologs in 476 eukaryotes. The Human–Cnidaria common ancestor displayed a massive emergence of neuroexclusive genes, mainly ionotropic receptors, which might have been crucial to the evolution of synapses. Very few synaptic genes had their origin after the Human–Cnidaria common ancestor. We also identified a higher abundance of synaptic proteins in vertebrates, which suggests an increase in the synaptic network complexity of those organisms.


2020 ◽  
Author(s):  
Marijn Kuijpers ◽  
Gaga Kochlamazashvili ◽  
Alexander Stumpf ◽  
Dmytro Puchkov ◽  
Max Thomas Lucht ◽  
...  

SUMMARYInformation processing in the brain is encoded as electrical impulses in neurons that are relayed from the presynaptic compartment to postsynaptic neurons by regulated neurotransmitter release. Neurons are known to rely on autophagy for the removal of defective proteins or organelles to maintain synaptic neurotransmission and to counteract neurodegeneration. In spite of its importance for neuronal health, the physiological substrates of neuronal autophagy in the absence of proteotoxic challenge have remained largely elusive. We use knockout mice conditionally lacking the essential autophagy protein ATG5 and quantitative proteomics to demonstrate that loss of neuronal autophagy causes the selective accumulation of tubular endoplasmic reticulum (ER) in axons, resulting in increased excitatory neurotransmission and compromised postnatal viability in vivo. The gain in excitatory neurotransmission is shown to be a consequence of elevated calcium release from ER stores via ryanodine receptors accumulated in axons and at presynaptic sites. We propose a model in which neuronal autophagy controls axonal ER calcium stores to regulate neurotransmission in healthy neurons and in the brain.


Sign in / Sign up

Export Citation Format

Share Document