spatial constraint
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 40)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yuheng Yan ◽  
Yiqiu Liang ◽  
Zihan Zhou ◽  
Bin Jiang ◽  
Jian Xiao

In recent years, the pose estimation of objects has become a research hotspot. This technique can effectively estimate the pose changes of objects in space and is widely used in many mobile devices, such as AR/VR. At present, mainstream technologies can achieve high-precision pose estimation, but the problem of that of multiple irregular objects in mobile and embedded devices under limited resource conditions is still challenging. In this paper, we propose a FastQR algorithm that can estimate the pose of multiple irregular objects on Renesas by utilizing homography method to solve the transformation matrix of a single QR code and then establish the spatial constraint relationship between multiple QR codes to estimate the posture of irregular objects. Our algorithm obtained a competitive result in simulation and verification on the RZ/A2M development board of Renesas. Moreover, the verification results show that our method can estimate the spatial pose of the multiobject accurately and robustly in distributed embedded devices. The average frame rate calculated on the RZ/A2M can reach 28 fps, which is at least 37 times faster than that of other pose estimation methods.


2021 ◽  
Author(s):  
Bian Li ◽  
Dan M. Roden ◽  
John A. Capra

AbstractQuantification of the tolerance of protein-coding sites to genetic variation within human populations has become a cornerstone of the prediction of the function of genomic variants. We hypothesize that the constraint on missense variation at individual amino acid sites is largely shaped by direct 3D interactions with neighboring sites. To quantify the constraint on protein-coding genetic variation in 3D spatial neighborhoods, we introduce a new framework called COntact Set MISsense tolerance (or COSMIS) for estimating constraint. Leveraging recent advances in computational structure prediction, large-scale sequencing data from gnomAD, and a mutation-spectrum-aware statistical model, we comprehensively map the landscape of 3D spatial constraint on 6.1 amino acid sites covering >80% (16,533) of human proteins. We show that the human proteome is broadly under 3D spatial constraint and that the level of spatial constraint is strongly associated with disease relevance both at the individual site level and the protein level. We demonstrate that COSMIS performs significantly better at a range of variant interpretation tasks than other population-based constraint metrics while also providing biophysical insight into the potential functional roles of constrained sites. We make our constraint maps freely available and anticipate that the structural landscape of constrained sites identified by COSMIS will facilitate interpretation of protein-coding variation in human evolution and prioritization of sites for mechanistic or functional investigation.


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1196
Author(s):  
Jianhua Song ◽  
Zhe Zhang

Magnetic resonance imaging (MRI) segmentation is a fundamental and significant task since it can guide subsequent clinic diagnosis and treatment. However, images are often corrupted by defects such as low-contrast, noise, intensity inhomogeneity, and so on. Therefore, a weighted level set model (WLSM) is proposed in this study to segment inhomogeneous intensity MRI destroyed by noise and weak boundaries. First, in order to segment the intertwined regions of brain tissue accurately, a weighted neighborhood information measure scheme based on local multi information and kernel function is designed. Then, the membership function of fuzzy c-means clustering is used as the spatial constraint of level set model to overcome the sensitivity of level set to initialization, and the evolution of level set function can be adaptively changed according to different tissue information. Finally, the distance regularization term in level set function is replaced by a double potential function to ensure the stability of the energy function in the evolution process. Both real and synthetic MRI images can show the effectiveness and performance of WLSM. In addition, compared with several state-of-the-art models, segmentation accuracy and Jaccard similarity coefficient obtained by WLSM are increased by 0.0586, 0.0362 and 0.1087, 0.0703, respectively.


Author(s):  
Hao Li ◽  
Ruyi Feng ◽  
Lizhe Wang ◽  
Yanfei Zhong ◽  
Liangpei Zhang ◽  
...  

ACS Catalysis ◽  
2021 ◽  
pp. 6892-6899
Author(s):  
Sung-Hyun Park ◽  
Hogyun Seo ◽  
Jihye Seok ◽  
Haseong Kim ◽  
Kil Koang Kwon ◽  
...  

2021 ◽  
pp. 2150354
Author(s):  
Baihua Gong ◽  
Xin-Hui Zhang

We address the problem of a single impurity atom moving in a two-dimensional (2D) layer immersed in a 3D Fermi gas. Using a variational approach, we show that in this mixed-dimensional (MD) system, there is a transition between polaron and molecule ground states, similar to the case of pure 3D. Moreover, we find that the attractive polaron energy in MD is higher than that in 3D, while molecular energy in MD is lower than that in 3D, which leads to a shift of the critical interaction strength of transition. Further analysis shows that the energy difference between 3D and MD systems is attributed to the increment of the effective mass of the impurity, which is induced by the spatial constraint on the impurity.


Sign in / Sign up

Export Citation Format

Share Document