dislocation dynamic
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 7)

H-INDEX

3
(FIVE YEARS 1)

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1979
Author(s):  
Kengo Yoshida ◽  
Yasuhito Yamazaki ◽  
Hidetaka Nakanishi

The influence of the heat treatment on the plastic anisotropy of an Al–Mg–Si sheet was investigated by experiments and crystal plasticity simulations. Uniaxial tension tests were conducted for the naturally aged (T4 temper) and annealed (O temper) Al–Mg–Si sheets. Solute atoms Mg and Si form clusters in the T4 temper sheet, while they bind to form precipitates in the O temper sheet. It is found that the in-plane variation of the R value, texture, and grain size are almost identical for both sheets. By contrast, the anisotropy of the flow stress is clearly dissimilar; the flow stress is the highest in the diagonal direction for the O temper sheet, whereas the flow stress in that direction is nearly lowest for the T4 temper sheet. Thus, the heat treatment alters the anisotropy of the flow stress. The plastic behaviors of the specimens were simulated using the dislocation density-based crystal plasticity model. The influence of the dislocation interaction matrix on the plastic anisotropy was examined. The orientation dependence of the flow stress is found to be sensitive to the interaction matrix. The flow stresses predicted by the interaction matrix determined based on the dislocation dynamic simulation agree with the experimental results for the O temper sheet. Whereas this interaction matrix does not reproduce the flow stress anisotropy for the T4 temper sheet. When the interactions among the dislocations are set to equivalent—i.e., the interaction matrix is filled with unity—the crystal plasticity simulation results in the flow stress anisotropy that is similar to the experimental trend of the T4 temper sheet. In contrast to the flow stress, the R value is insensitive to the interaction matrix, and the predicted R values agree with the experimental results for both specimens.


Author(s):  
Mu'Tasem Shehadeh ◽  
Pascale El Ters ◽  
Ronald W. Armstrong ◽  
Werner Arnold

Abstract High strain rate simulations were performed using the multiscale dislocation dynamic plasticity (MDDP) method to calculate different rise times and load durations in mimicking high deformation rate shock or isentropic (ramp) testing of a-iron and tantalum crystals. Focus for both types of loading on both materials was on the inter-relationship between the (dislocation-velocity-related) strain rate sensitivity and the (time-dependent) evolution of dislocation density. The computations are compared with model thermal activation strain rate analysis (TASRA), phonon drag and dislocation generation predictions. The overall comparison of simulated tests and previous experimental measurements shows that the imposition of a rise time even as small as 0.2 ns preceding plastic relaxation via the MDDP method is indicative of relatively weak shock behavior.


2019 ◽  
Vol 51 (1) ◽  
pp. 400-409
Author(s):  
Navid Kermanshahimonfared ◽  
Hesam Askari ◽  
Ioannis Mastorakos

Author(s):  
Alireza Babaei ◽  
Firooz Esmaeili-Goldarag ◽  
Hossein Jafarzadeh

The aim of this study is an experimental and numerical investigation of the fatigue behavior of a notched ultrafine-grained pure aluminum processed by strip cyclic extrusion-compression method. In this regard, the fatigue experiments were conducted for the unprocessed and strip cyclic extrusion-compression processed specimens under various cyclic loads. In the numerical analyses, a dislocation dynamic constitutive material model which tracks the microstructure evolution was implemented for numerical estimation of the values of fatigue strength reduction factor via the volumetric approach. Considering the three-dimensional effect near the plate hole, the variation of the fatigue notch factor through the thickness of the plate was investigated and the obtained results showed that maximum fatigue strength reduction factor was occurred in the middle of the plate due to the symmetry of specimen geometry and loading condition. The investigation reveals a good agreement between the numerical and experimental lives. The results showed although the smooth processed specimens have higher fatigue strength in comparison of the unprocessed ones, the notched processed specimens have lower fatigue strength in comparison of the unprocessed ones.


2014 ◽  
Vol 553 ◽  
pp. 28-34 ◽  
Author(s):  
Nathaniel James Burbery ◽  
Raj Das ◽  
Giacomo Po ◽  
Nasr Ghoniem

Plastic deformation in face-centred cubic (or ‘FCC’) metals involves multi-scale phenomena which are initiated at atomic length and time scales (on order of 1.0e-15seconds). Understanding the fundamental thresholds for plasticity at atomic and nano/meso scales requires rigorous testing, which cannot be feasibly achieved with current experimental methods. Hence, computer simulation-based investigations are extremely valuable. However, meso-scale simulations cannot yet accommodate atomically-informed grain boundary (or ‘GB’) effects and dislocation interactions. This study will provide a stress - strain analysis based on molecular dynamics simulations of a series of metastable grain boundaries with identical crystal orientations but unique grain boundary characteristics. Relationships between dislocation slip systems, resolved shear stresses and additional thermo-mechanical conditions of the system will be considered in the analysis of dislocation-grain boundary interactions, including GB penetration. This study will form the basis of new phenomenological relationships in an effort to enable accommodation of grain boundaries into meso scale dislocation dynamic simulations.


Sign in / Sign up

Export Citation Format

Share Document