limited sensing
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 34)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shanlin Zhong ◽  
Ziyu Chen ◽  
Junjie Zhou

Purpose Human-like musculoskeletal robots can fulfill flexible movement and manipulation with the help of multi joints and actuators. However, in general, sophisticated structures, accurate sensors and well-designed control are all necessary for a musculoskeletal robot to achieve high-precision movement. How to realize the reliable and accurate movement of the robot under the condition of limited sensing and control accuracy is still a bottleneck problem. This paper aims to improve the movement performance of musculoskeletal system by bio-inspired method. Design/methodology/approach Inspired by two kinds of natural constraints, the convergent force field found in neuroscience and attractive region in the environment found in information science, the authors proposed a structure transforming optimization algorithm for constructing constraint force field in musculoskeletal robots. Due to the characteristics of rigid-flexible coupling and variable structures, a constraint force field can be constructed in the task space of the musculoskeletal robot by optimizing the arrangement of muscles. Findings With the help of the constraint force field, the robot can complete precise and robust movement with constant control signals, which brings in the possibility to reduce the requirement of sensing feedback during the motion control of the robot. Experiments are conducted on a musculoskeletal model to evaluate the performance of the proposed method in movement accuracy, noise robustness and structure sensitivity. Originality/value A novel concept, constraint force field, is proposed to realize high-precision movements of musculoskeletal robots. It provides a new theoretical basis for improving the performance of robotic manipulation such as assembly and grasping under the condition that the accuracy of control and sensory are limited.


2021 ◽  
Vol 13 (21) ◽  
pp. 12283
Author(s):  
Clara Scheutz ◽  
Theresa Law ◽  
Matthias Scheutz

Environmental psychology aims to study human behavior with regard to the environment and how psychological techniques can be used to motivate behavior change. We argue that these concepts can be applied to interactive robots designed for other tasks, which then enables them to encourage sustainability behaviors in humans. We first present a literature review on the current state of social robots that are used to encourage sustainable behaviors. We next present eight hypothetical scenarios which are informed by the progress that has already been made in social robots in sustainability, as well as notable gaps where further environmental psychological concepts could be utilized. These scenarios encompass possible robots that range from limited sensing and no manipulation capabilities, to more sophisticated sensing and no manipulation, to sophisticated sensing and manipulation capabilities. We present these scenarios in which human–robot interaction could potentially result in pro-environmental behavioral changes in humans as recommendations for robot designers interested in helping design social robots for sustainability.


2021 ◽  
Vol 11 (21) ◽  
pp. 10197
Author(s):  
Wenbo Zhu ◽  
Chia-Ling Huang ◽  
Wei-Chang Yeh ◽  
Yunzhi Jiang ◽  
Shi-Yi Tan

The wireless sensor network (WSN) plays an essential role in various practical smart applications, e.g., smart grids, smart factories, Internet of Things, and smart homes, etc. WSNs are comprised and embedded wireless smart sensors. With advanced developments in wireless sensor networks research, sensors have been rapidly used in various fields. In the meantime, the WSN performance depends on the coverage ratio of the sensors being used. However, the coverage of sensors generally relates to their cost, which usually has a limit. Hence, a new bi-tuning simplified swarm optimization (SSO) is proposed that is based on the SSO to solve such a budget-limited WSN sensing coverage problem to maximize the number of coverage areas to improve the performance of WSNs. The proposed bi-tuning SSO enhances SSO by integrating the novel concept to tune both the SSO parameters and SSO update mechanism simultaneously. The performance and applicability of the proposed bi-tuning SSO using seven different parameter settings are demonstrated through an experiment involving nine WSN tests ranging from 20, 100, to 300 sensors. The proposed bi-tuning SSO outperforms two state-of-the-art algorithms: genetic algorithm (GA) and particle swarm optimization (PSO), and can efficiently accomplish the goals of this work.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Junsheng Mu ◽  
Youheng Tan ◽  
Dongliang Xie ◽  
Fangpei Zhang ◽  
Xiaojun Jing

Spectrum sensing (SS) has attracted much attention in the field of Internet of things (IoT) due to its capacity of discovering the available spectrum holes and improving the spectrum efficiency. However, the limited sensing time leads to insufficient sampling data due to the tradeoff between sensing time and communication time. In this paper, deep learning (DL) is applied to SS to achieve a better balance between sensing performance and sensing complexity. More specifically, the two-dimensional dataset of the received signal is established under the various signal-to-noise ratio (SNR) conditions firstly. Then, an improved deep convolutional generative adversarial network (DCGAN) is proposed to expand the training set so as to address the issue of data shortage. Moreover, the LeNet, AlexNet, VGG-16, and the proposed CNN-1 network are trained on the expanded dataset. Finally, the false alarm probability and detection probability are obtained under the various SNR scenarios to validate the effectiveness of the proposed schemes. Simulation results state that the sensing accuracy of the proposed scheme is greatly improved.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4911
Author(s):  
Xinyu Zhang ◽  
Chengbo Wang ◽  
Kwok Tai Chui ◽  
(Ryan) Wen Liu

Real-time collision-avoidance navigation of autonomous ships is required by many application scenarios, such as carriage of goods by sea, search, and rescue. The collision avoidance algorithm is the core of autonomous navigation for Maritime autonomous surface ships (MASS). In order to realize real-time and free-collision under the condition of multi-ship encounter in an uncertain environment, a real-time collision avoidance framework is proposed using B-spline and optimal decoupling control. This framework takes advantage to handle the uncertain environment with limited sensing MASS which plans dynamically feasible, highly reliable, and safe feasible collision avoidance. First, owing to the collision risk assessment, a B-spline-based collision avoidance trajectory search (BCATS) algorithm is proposed to generate free-collision trajectories effectively. Second, a waypoint-based collision avoidance trajectory optimization is proposed with the path-speed decoupling control. Two benefits, a reduction of control cost and an improvement in the smoothness of the collision avoidance trajectory, are delivered. Finally, we conducted an experiment using the Electronic Chart System (ECS). The results reveal the robustness and real-time collision avoidance trajectory planned by the proposed collision avoidance system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jason Hindes ◽  
Victoria Edwards ◽  
Klimka Szwaykowska Kasraie ◽  
George Stantchev ◽  
Ira B. Schwartz

AbstractUnderstanding swarm pattern formation is of great interest because it occurs naturally in many physical and biological systems, and has artificial applications in robotics. In both natural and engineered swarms, agent communication is typically local and sparse. This is because, over a limited sensing or communication range, the number of interactions an agent has is much smaller than the total possible number. A central question for self-organizing swarms interacting through sparse networks is whether or not collective motion states can emerge where all agents have coherent and stable dynamics. In this work we introduce the phenomenon of swarm shedding in which weakly-connected agents are ejected from stable milling patterns in self-propelled swarming networks with finite-range interactions. We show that swarm shedding can be localized around a few agents, or delocalized, and entail a simultaneous ejection of all agents in a network. Despite the complexity of milling motion in complex networks, we successfully build mean-field theory that accurately predicts both milling state dynamics and shedding transitions. The latter are described in terms of saddle-node bifurcations that depend on the range of communication, the inter-agent interaction strength, and the network topology.


2021 ◽  
Vol 11 (10) ◽  
pp. 4627
Author(s):  
Hebah ElGibreen

Swarm robotics is an emerging field that can offer efficient solutions to real-world problems with minimal cost. Despite recent developments in the field, however, it is still not sufficiently mature, and challenges clearly remain. The dynamic deadline problem is neglected in the literature, and thus, time-sensitive foraging tasks are still an open research problem. This paper proposes a novel approach—ED_Foraging—that allows simple robots with limited sensing and communication abilities to perform complex foraging tasks that are dynamic and time constrained. A new mathematical model is developed in this paper to utilize epidemiological modeling and predict the dynamics of resource deadlines. Moreover, an improved dynamic task allocation (DTA) method is proposed to assign robots to the most critical region, where a deadline is represented by a state and time. The main goal is to reduce the number of expired resources and collect them as quickly as possible by giving priority to those that are more likely to expire if not collected. The deadlines are unknown and change dynamically. Thus, the robots continuously collect local information throughout their journeys and allocate themselves dynamically to the predicted hotspots. In the experiments, the proposed approach is adapted to four DTA methods and tested with different setups using simulated foot-bot robots. The flexibility, scalability, and robustness of this approach are measured in terms of the foraging and expiration rates. The empirical results support the hypothesis that epidemiological modeling can be utilized to handle foraging tasks that are constrained by dynamic deadlines. It is also confirmed that the proposed DTA method improves the results, which were found to be flexible, scalable, and robust to changes in the number of robots and the map size.


Author(s):  
Teodora Sandra Buda ◽  
Mohammed Khwaja ◽  
Aleksandar Matic

Enabling smartphones to understand our emotional well-being provides the potential to create personalised applications and highly responsive interfaces. However, this is by no means a trivial task - subjectivity in reporting emotions impacts the reliability of ground-truth information whereas smartphones, unlike specialised wearables, have limited sensing capabilities. In this paper, we propose a new approach that advances emotional state prediction by extracting outlier-based features and by mitigating the subjectivity in capturing ground-truth information. We utilised this approach in a distinctive and challenging use case - happiness detection - and we demonstrated prediction performance improvements of up to 13% in AUC and 27% in F-score compared to the traditional modelling approaches. The results indicate that extreme values (i.e. outliers) of sensor readings mirror extreme values in the reported happiness levels. Furthermore, we showed that this approach is more robust in replicating the prediction model in completely new experimental settings.


Sign in / Sign up

Export Citation Format

Share Document