scholarly journals ARTEMIS Observations of Plasma Waves in Laminar and Perturbed Interplanetary Shocks

2021 ◽  
Vol 913 (2) ◽  
pp. 144
Author(s):  
L. A. Davis ◽  
C. A. Cattell ◽  
L. B. Wilson ◽  
Z. A. Cohen ◽  
A. W. Breneman ◽  
...  
2020 ◽  
Author(s):  
Milan Maksimovic ◽  
Jan Souček ◽  
Stuart D. Bale ◽  
Xavier Bonnin ◽  
Thomas Chust ◽  
...  

<p>We will review the instrumental capabilities of the Radio and Plasma Waves (RPW) Instrument on Solar Orbiter which at the time of writing this abstract is planned for a launch on February 5<sup>th</sup> 2020. This instrument is designed to measure in-situ magnetic and electric fields and waves from 'DC' to a few hundreds of kHz. RPW will also observe solar radio emissions up to 16 MHz. The RPW instrument is of primary importance to the Solar Orbiter mission and science requirements, since it is essential to answer three of the four mission overarching science objectives. In addition, RPW will exchange on-board data with the other in-situ instruments, in order to process algorithms for interplanetary shocks and type III Langmuir waves detections. If everything goes well after the launch, we will hopefully be able to present the first RPW data and results gathered during the commissioning.</p>


2020 ◽  
Vol 642 ◽  
pp. A12 ◽  
Author(s):  
M. Maksimovic ◽  
S. D. Bale ◽  
T. Chust ◽  
Y. Khotyaintsev ◽  
V. Krasnoselskikh ◽  
...  

The Radio and Plasma Waves (RPW) instrument on the ESA Solar Orbiter mission is described in this paper. This instrument is designed to measure in-situ magnetic and electric fields and waves from the continuous to a few hundreds of kHz. RPW will also observe solar radio emissions up to 16 MHz. The RPW instrument is of primary importance to the Solar Orbiter mission and science requirements since it is essential to answer three of the four mission overarching science objectives. In addition RPW will exchange on-board data with the other in-situ instruments in order to process algorithms for interplanetary shocks and type III langmuir waves detections.


2020 ◽  
Author(s):  
Jan Soucek ◽  
Ludek Uhlir ◽  
Radek Lan ◽  
David Pisa ◽  
Ivana Kolmasova ◽  
...  

<p>The Radio and Plasma Wave instrument (RPW) for Solar Orbiter includes a Time Domain Sampler sub-unit (TDS) designed to capture electromagnetic waveform measurements of high-frequency plasma waves and antenna voltage spikes associated with dust impacts. TDS will digitize three components of the electric field and one magnetic component at 524 kHz sampling rate and scan the obtained signal for plasma waves and dust impact signatures. The main science target of TDS are Langmuir waves observed in the solar wind in association with Type II and Type III solar bursts, interplanetary shocks, magnetic holes, and other phenomena. In this poster, we present the scientific data products provided by the TDS instrument and discuss the first data obtained during the commissioning phase. The first data will be used to evaluate the actual performance of the RPW TDS instrument.</p>


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Shinichi Watari ◽  
Satoko Nakamura ◽  
Yusuke Ebihara

AbstractWe need a typical method of directly measuring geomagnetically induced current (GIC) to compare data for estimating a potential risk of power grids caused by GIC. Here, we overview GIC measurement systems that have appeared in published papers, note necessary requirements, report on our equipment, and show several examples of our measurements in substations around Tokyo, Japan. Although they are located at middle latitudes, GICs associated with various geomagnetic disturbances are observed, such as storm sudden commencements (SSCs) or sudden impulses (SIs) caused by interplanetary shocks, geomagnetic storms including a storm caused by abrupt southward turning of strong interplanetary magnetic field (IMF) associated with a magnetic cloud, bay disturbances caused by high-latitude aurora activities, and geomagnetic variation caused by a solar flare called the solar flare effect (SFE). All these results suggest that GIC at middle latitudes is sensitive to the magnetospheric current (the magnetopause current, the ring current, and the field-aligned current) and also the ionospheric current.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Francesco Gabriele ◽  
Mattia Udina ◽  
Lara Benfatto

AbstractThe hallmark of superconductivity is the rigidity of the quantum-mechanical phase of electrons, responsible for superfluid behavior and Meissner effect. The strength of the phase stiffness is set by the Josephson coupling, which is strongly anisotropic in layered cuprates. So far, THz light pulses have been used to achieve non-linear control of the out-of-plane Josephson plasma mode, whose frequency lies in the THz range. However, the high-energy in-plane plasma mode has been considered insensitive to THz pumping. Here, we show that THz driving of both low-frequency and high-frequency plasma waves is possible via a general two-plasmon excitation mechanism. The anisotropy of the Josephson couplings leads to markedly different thermal effects for the out-of-plane and in-plane response, linking in both cases the emergence of non-linear photonics across Tc to the superfluid stiffness. Our results show that THz light pulses represent a preferential knob to selectively drive phase excitations in unconventional superconductors.


2021 ◽  
Author(s):  
Stella Koch Ocker ◽  
James M. Cordes ◽  
Shami Chatterjee ◽  
Donald A. Gurnett ◽  
William S. Kurth ◽  
...  

2020 ◽  
Vol 7 (6) ◽  
pp. 064301
Author(s):  
Shuaishuai Sun ◽  
Xiaoyi Sun ◽  
Daniel Bartles ◽  
Elliot Wozniak ◽  
Joseph Williams ◽  
...  

2005 ◽  
Vol 23 (2) ◽  
pp. 609-624 ◽  
Author(s):  
K. E. J. Huttunen ◽  
J. Slavin ◽  
M. Collier ◽  
H. E. J. Koskinen ◽  
A. Szabo ◽  
...  

Abstract. Sudden impulses (SI) in the tail lobe magnetic field associated with solar wind pressure enhancements are investigated using measurements from Cluster. The magnetic field components during the SIs change in a manner consistent with the assumption that an antisunward moving lateral pressure enhancement compresses the magnetotail axisymmetrically. We found that the maximum variance SI unit vectors were nearly aligned with the associated interplanetary shock normals. For two of the tail lobe SI events during which Cluster was located close to the tail boundary, Cluster observed the inward moving magnetopause. During both events, the spacecraft location changed from the lobe to the magnetospheric boundary layer. During the event on 6 November 2001 the magnetopause was compressed past Cluster. We applied the 2-D Cartesian model developed by collier98 in which a vacuum uniform tail lobe magnetic field is compressed by a step-like pressure increase. The model underestimates the compression of the magnetic field, but it fits the magnetic field maximum variance component well. For events for which we could determine the shock normal orientation, the differences between the observed and calculated shock propagation times from the location of WIND/Geotail to the location of Cluster were small. The propagation speeds of the SIs between the Cluster spacecraft were comparable to the solar wind speed. Our results suggest that the observed tail lobe SIs are due to lateral increases in solar wind dynamic pressure outside the magnetotail boundary.


Sign in / Sign up

Export Citation Format

Share Document