polarized reflectance
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 19)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
pp. 000370282110478
Author(s):  
Gilles Fortin

Spectra of the optical constants n and k of a substance are often deduced from spectroscopic measurements, performed on a thick and homogeneous sample, and from a model used to simulate these measurements. Spectra obtained for n and k using the ellipsometric method generally produce polarized reflectance simulations in strong agreement with the experimental measurements, but they sometimes introduce significant discrepancies over limited spectral ranges, whereas spectra of n and k obtained with the single-angle reflectance method require a perfectly smooth sample surface to be viable. This paper presents an alternative method to calculate n and k. The method exploits both ellipsometric measurements and s-polarized specular reflectance measurements, and compensates for potential surface scattering effects with the introduction of a specularity factor. It is applicable to bulk samples having either a smooth or a rough surface. It provides spectral optical constants that are consistent with s-polarized reflectance measurements. Demonstrations are performed in the infrared region using a glass slide (smooth surface) and a pellet of compressed ammonium sulfate powder (rough surface).


2020 ◽  
Author(s):  
Romain Cerubini ◽  
Antoine Pommerol ◽  
Olivier Poch ◽  
Kristina Kipfer ◽  
Thomas Nicolas

2020 ◽  
Vol 12 (9) ◽  
pp. 1421
Author(s):  
Lipi Mukherjee ◽  
Peng-Wang Zhai ◽  
Meng Gao ◽  
Yongxiang Hu ◽  
Bryan A. Franz ◽  
...  

Remote sensing of global ocean color is a valuable tool for understanding the ecology and biogeochemistry of the worlds oceans, and provides critical input to our knowledge of the global carbon cycle and the impacts of climate change. Ocean polarized reflectance contains information about the constituents of the upper ocean euphotic zone, such as colored dissolved organic matter (CDOM), sediments, phytoplankton, and pollutants. In order to retrieve the information on these constituents, remote sensing algorithms typically rely on radiative transfer models to interpret water color or remote-sensing reflectance; however, this can be resource-prohibitive for operational use due to the extensive CPU time involved in radiative transfer solutions. In this work, we report a fast model based on machine learning techniques, called Neural Network Reflectance Prediction Model (NNRPM), which can be used to predict ocean bidirectional polarized reflectance given inherent optical properties of ocean waters. This supervised model is trained using a large volume of data derived from radiative transfer simulations for coupled atmosphere and ocean systems using the successive order of scattering technique (SOS-CAOS). The performance of the model is validated against another large independent test dataset generated from SOS-CAOS. The model is able to predict both polarized and unpolarized reflectances with an absolute error (AE) less than 0.004 for 99% of test cases. We have also shown that the degree of linear polarization (DoLP) for unpolarized incident light can be predicted with an AE less than 0.002 for 99% of test cases. In general, the simulation time of SOS-CAOS depends on optical depth, and required accuracy. When comparing the average speeds of the NNRPM against the SOS-CAOS model for the same parameters, we see that the NNRPM is able to predict the Ocean BRDF 6000 times faster than SOS-CAOS. Both ultraviolet and visible wavelengths are included in the model to help differentiate between dissolved organic material and chlorophyll in the study of the open ocean and the coastal zone. The incorporation of this model into the retrieval algorithm will make the retrieval process more efficient, and thus applicable for operational use with global satellite observations.


2020 ◽  
Vol 12 (2) ◽  
pp. 248 ◽  
Author(s):  
Yuhao He ◽  
Bin Yang ◽  
Hui Lin ◽  
Junqiang Zhang

Retrieval of complete aerosol properties over land through remote sensing requires accurate information about the polarization characteristics of natural land surfaces. In this paper, a new bidirectional polarization distribution function (BPDF) is proposed, using the generalized regression neural network (GRNN). This GRNN-based BPDF model builds a quite accurate nonlinear relationship between polarized reflectance and four input parameters, i.e., Fresnel factor, scattering angle, red, and near-infrared reflectances. It learns fast because only a smoothing parameter needs to be adjusted. The GRNN-based model is compared to six widely used BPDF models (i.e., Nadal–Bréon, Maignan, Waquet, Litivinov, Diner, and Xie–Cheng models), using the Polarization and Directionality of the Earth’s Reflectance (POLDER) measurements. Experiments suggest that the GRNN-based BPDF model is more accurate than these models. Compared with the best current models, the averaged root-mean-square error (RMSE) from the GRNN-based BPDF model can be reduced by 13.4% by using data collected during the whole year and is lower for 97.4% cases with data collected during every month. Moreover, compared to the widely used BPDF models, the GRNN-based BPDF model provides better performance when the scattering angle is small, and it is the first model that is able to reproduce negative polarized reflectance. The GRNN-based BPDF model is thus useful for the remote sensing of complete aerosol properties over land.


Sign in / Sign up

Export Citation Format

Share Document