scholarly journals Myricetin allosterically inhibits Dengue NS2B-NS3 protease as studied by NMR and MD simulations

2021 ◽  
Author(s):  
Mei Dang ◽  
Jianxing Song

Dengue NS2B-NS3 protease existing in equilibrium between the active and inactive forms is essential for virus replication, thus representing a key drug target. Here Myricetin, a plant flavonoid, was characterized to non-competitively inhibit Dengue protease. Further NMR study identified the protease residues perturbed by binding to Myricetin, which were utilized to construct the Myricetin-protease complexes. Strikingly, in the active form Myricetin binds a new allosteric site (AS2) far away from the active site pocket and allosteric site (AS1) for binding Curcumin, while in the inactive form it binds both AS1 and AS2. To decipher the mechanism for the allosteric inhibition by Myricetin, we conducted molecular dynamics (MD) simulations on different forms of Dengue NS2B-NS3 protease. Unexpectedly, the binding of Myricetin to AS2 is sufficient to disrupt the active conformation by displacing the characteristic NS2B C-terminal b- hairpin from the active site pocket. By contrast, the binding of Myricetin to AS1 and AS2 results in locking the inactive conformation. Therefore Myricetin represents the first small molecule which allosterically inhibits Dengue protease by both disrupting the active conformation and locking the inactive conformation. The results enforce the notion that a global allosteric network exists in Dengue NS2B-NS3 protease, which is susceptible to allosteric inhibition by small molecules such as Myricetin and Curcumin. As Myricetin has been extensively used as a food additive, it might be directly utilized to fight the Dengue infections and as a promising starting for further design of potent allosteric inhibitors.

2020 ◽  
Author(s):  
Liangzhong Lim ◽  
Mei Dang ◽  
Amrita Roy ◽  
Jian Kang ◽  
Jianxing Song

ABSTRACTFlaviviruses including DENV and ZIKV encode a unique two-component NS2B-NS3 protease essential for maturation/infectivity, thus representing a key target for designing anti-flavivirus drugs. Here for the first time, by NMR and molecular docking, we reveal that Curcumin allosterically inhibits the Dengue protease by binding to a cavity with no overlap with the active site. Further molecular dynamics (MD) simulations decode that the binding of Curcumin leads to unfolding/displacing the characteristic β-hairpin of the C-terminal NS2B and consequently disrupting the closed (active) conformation of the protease. Our study identified a cavity most likely conserved in all flaviviral NS2B-NS3 proteases, which could thus serve as a therapeutic target for discovery/design of small molecule allosteric inhibitors. Moreover, as Curcumin has been used as a food additive for thousands of years in many counties, it can be directly utilized to fight the flaviviral infections and as a promising starting for further design of potent allosteric inhibitors.


Author(s):  
P. Deschamps ◽  
S. Réty ◽  
J. Bareille ◽  
N. Leulliot

Human thymidylate synthase (hTS) provides the solede novointracellular source of thymidine 5′-monophosphate (dTMP). hTS is required for DNA replication prior to cell division, making it an attractive target for anticancer chemotherapy and drug discovery. hTS binds 2′-deoxyuridine 5′-monophosphate (dUMP) and the folate co-substrateN5,N10-methylenetetrahydrofolate (meTHF) in a pocket near the catalytic residue Cys195. The catalytic loop, which is composed of amino-acid residues 181–197, can adopt two distinct conformations related by a 180° rotation. In the active conformation Cys195 is close to the active site, while in the inactive conformation it is rotated and Cys195 is too distant from the active site for catalysis. Several hTS structures, either native or engineered, have been solved in the active conformation in complex with ligands or inhibitors and at different salt concentrations. However, apo hTS structures have been solved in an inactive conformation in high-salt and low-salt conditions (PDB entries 1ypv, 4h1i, 4gyh, 3egy and 3ehi). Here, the structure of apo hTS crystallized in the active form with sulfate ions coordinated by the arginine residue that binds dUMP is reported.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257206
Author(s):  
R. V. Sriram Uday ◽  
Rajdip Misra ◽  
Annaram Harika ◽  
Sandip Dolui ◽  
Achintya Saha ◽  
...  

Dengue virus (DENV) encodes a unique protease (NS3/NS2B) essential for its maturation and infectivity and, it has become a key target for anti-viral drug design to treat dengue and other flavivirus related infections. Present investigation established that some of the drug molecules currently used mainly in cancer treatment are susceptible to bind non-active site (allosteric site/ cavity) of the NS3 protease enzyme of dengue virus. Computational screening and molecular docking analysis found that dabrafenib, idelalisib and nintedanib can bind at the allosteric site of the enzyme. The binding of the molecules to the allosteric site found to be stabilized via pi-cation and hydrophobic interactions, hydrogen-bond formation and π-stacking interaction with the molecules. Several interacting residues of the enzyme were common in all the five serotypes. However, the interaction/stabilizing forces were not uniformly distributed; the π-stacking was dominated with DENV3 proteases, whereas, a charged/ionic interaction was the major force behind interaction with DENV2 type proteases. In the allosteric cavity of protease from DENV1, the residues Lys73, Lys74, Thr118, Glu120, Val123, Asn152 and Ala164 were involved in active interaction with the three molecules (dabrafenib, idelalisib and nintedanib). Molecular dynamics (MD) analysis further revealed that the molecules on binding to NS3 protease caused significant changes in structural fluctuation and gained enhanced stability. Most importantly, the binding of the molecules effectively perturbed the protein conformation. These changes in the protein conformation and dynamics could generate allosteric modulation and thus may attenuate/alter the NS3 protease functionality and mobility at the active site. Experimental studies may strengthen the notion whether the binding reduce/enhance the catalytic activity of the enzyme, however, it is beyond the scope of this study.


2021 ◽  
Vol 14 (5) ◽  
pp. 420
Author(s):  
Tanveer Ali ◽  
Abdul Basit ◽  
Asad Mustafa Karim ◽  
Jung-Hun Lee ◽  
Jeong-Ho Jeon ◽  
...  

β-Lactam antibiotics target penicillin-binding proteins and inhibit the synthesis of peptidoglycan, a crucial step in cell wall biosynthesis. Staphylococcus aureus acquires resistance against β-lactam antibiotics by producing a penicillin-binding protein 2a (PBP2a), encoded by the mecA gene. PBP2a participates in peptidoglycan biosynthesis and exhibits a poor affinity towards β-lactam antibiotics. The current study was performed to determine the diversity and the role of missense mutations of PBP2a in the antibiotic resistance mechanism. The methicillin-resistant Staphylococcus aureus (MRSA) isolates from clinical samples were identified using phenotypic and genotypic techniques. The highest frequency (60%, 18 out of 30) of MRSA was observed in wound specimens. Sequence variation analysis of the mecA gene showed four amino acid substitutions (i.e., E239K, E239R, G246E, and E447K). The E239R mutation was found to be novel. The protein-ligand docking results showed that the E239R mutation in the allosteric site of PBP2a induces conformational changes in the active site and, thus, hinders its interaction with cefoxitin. Therefore, the present report indicates that mutation in the allosteric site of PBP2a provides a more closed active site conformation than wide-type PBP2a and then causes the high-level resistance to cefoxitin.


2013 ◽  
Vol 454 (3) ◽  
pp. 387-399 ◽  
Author(s):  
Patrick Masson ◽  
Sofya Lushchekina ◽  
Lawrence M. Schopfer ◽  
Oksana Lockridge

CSP (cresyl saligenin phosphate) is an irreversible inhibitor of human BChE (butyrylcholinesterase) that has been involved in the aerotoxic syndrome. Inhibition under pseudo-first-order conditions is biphasic, reflecting a slow equilibrium between two enzyme states E and E′. The elementary constants for CSP inhibition of wild-type BChE and D70G mutant were determined by studying the dependence of inhibition kinetics on viscosity and osmotic pressure. Glycerol and sucrose were used as viscosogens. Phosphorylation by CSP is sensitive to viscosity and is thus strongly diffusion-controlled (kon≈108 M−1·min−1). Bimolecular rate constants (ki) are about equal to kon values, making CSP one of the fastest inhibitors of BChE. Sucrose caused osmotic stress because it is excluded from the active-site gorge. This depleted the active-site gorge of water. Osmotic activation volumes, determined from the dependence of ki on osmotic pressure, showed that water in the gorge of the D70G mutant is more easily depleted than that in wild-type BChE. This demonstrates the importance of the peripheral site residue Asp70 in controlling the active-site gorge hydration. MD simulations provided new evidence for differences in the motion of water within the gorge of wild-type and D70G enzymes. The effect of viscosogens/osmolytes provided information on the slow equilibrium E⇌E′, indicating that alteration in hydration of a key catalytic residue shifts the equilibrium towards E′. MD simulations showed that glycerol molecules that substitute for water molecules in the enzyme active-site gorge induce a conformational change in the catalytic triad residue His438, leading to the less reactive form E′.


Sign in / Sign up

Export Citation Format

Share Document