scholarly journals Computational Study of SARS-CoV-2 RNA Dependent RNA Polymerase Allosteric Site Inhibition

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 223
Author(s):  
Shah Faisal ◽  
Syed Lal Badshah ◽  
Bibi Kubra ◽  
Mohamed Sharaf ◽  
Abdul-Hamid Emwas ◽  
...  

The COVID-19 pandemic has caused millions of fatalities since 2019. Despite the availability of vaccines for this disease, new strains are causing rapid ailment and are a continuous threat to vaccine efficacy. Here, molecular docking and simulations identify strong inhibitors of the allosteric site of the SARS-CoV-2 virus RNA dependent RNA polymerase (RdRp). More than one hundred different flavonoids were docked with the SARS-CoV-2 RdRp allosteric site through computational screening. The three top hits were Naringoside, Myricetin and Aureusidin 4,6-diglucoside. Simulation analyses confirmed that they are in constant contact during the simulation time course and have strong association with the enzyme’s allosteric site. Absorption, distribution, metabolism, excretion and toxicity (ADMET) data provided medicinal information of these top three hits. They had good human intestinal absorption (HIA) concentrations and were non-toxic. Due to high mutation rates in the active sites of the viral enzyme, these new allosteric site inhibitors offer opportunities to drug SARS-CoV-2 RdRp. These results provide new information for the design of novel allosteric inhibitors against SARS-CoV-2 RdRp.

Hepatology ◽  
2021 ◽  
Author(s):  
Noémie Oechslin ◽  
Nathalie Da Silva ◽  
Dagmara Szkolnicka ◽  
François‐Xavier Cantrelle ◽  
Xavier Hanoulle ◽  
...  

2016 ◽  
Vol 61 (3) ◽  
Author(s):  
Gaofei Lu ◽  
Gregory R. Bluemling ◽  
Paul Collop ◽  
Michael Hager ◽  
Damien Kuiper ◽  
...  

ABSTRACT Zika virus (ZIKV) is an emerging human pathogen that is spreading rapidly through the Americas and has been linked to the development of microcephaly and to a dramatically increased number of Guillain-Barré syndrome cases. Currently, no vaccine or therapeutic options for the prevention or treatment of ZIKV infections exist. In the study described in this report, we expressed, purified, and characterized full-length nonstructural protein 5 (NS5) and the NS5 polymerase domain (NS5pol) of ZIKV RNA-dependent RNA polymerase. Using purified NS5, we developed an in vitro nonradioactive primer extension assay employing a fluorescently labeled primer-template pair. Both purified NS5 and NS5pol can carry out in vitro RNA-dependent RNA synthesis in this assay. Our results show that Mn2+ is required for enzymatic activity, while Mg2+ is not. We found that ZIKV NS5 can utilize single-stranded DNA but not double-stranded DNA as a template or a primer to synthesize RNA. The assay was used to compare the efficiency of incorporation of analog 5′-triphosphates by the ZIKV polymerase and to calculate their discrimination versus that of natural ribonucleotide triphosphates (rNTPs). The 50% inhibitory concentrations for analog rNTPs were determined in an alternative nonradioactive coupled-enzyme assay. We determined that, in general, 2′-C-methyl- and 2′-C-ethynyl-substituted analog 5′-triphosphates were efficiently incorporated by the ZIKV polymerase and were also efficient chain terminators. Derivatives of these molecules may serve as potential antiviral compounds to be developed to combat ZIKV infection. This report provides the first characterization of ZIKV polymerase and demonstrates the utility of in vitro polymerase assays in the identification of potential ZIKV inhibitors.


2013 ◽  
Vol 06 (01) ◽  
pp. 1250062
Author(s):  
YONG-HONG HU ◽  
BAO-HUA ZHANG

In this paper, we take naturally occurring 2-benzylidenebenzofuran-3-ones (aurones) inhibitors of hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) as an example to study the Multi-dimensional scaling (MDS) method for structure-activity relationship. By analyzing training set molecules, our MDS method combined with a PROXSCAL algorithm can predict inhibitory activity of most compounds correctly. Thus, a new sample's activity can be estimated and judged conveniently, and whether it should be synthesized can be known. The MDS method is applicable to optimize the structure for a compound and to provide suggestions for drug design.


2004 ◽  
Vol 279 (45) ◽  
pp. 47212-47221 ◽  
Author(s):  
Cristina Ferrer-Orta ◽  
Armando Arias ◽  
Rosa Perez-Luque ◽  
Cristina Escarmís ◽  
Esteban Domingo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document