density power divergence
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 20)

H-INDEX

11
(FIVE YEARS 2)

Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1147
Author(s):  
Shonosuke Sugasawa ◽  
Shouto Yonekura

Although robust divergence, such as density power divergence and γ-divergence, is helpful for robust statistical inference in the presence of outliers, the tuning parameter that controls the degree of robustness is chosen in a rule-of-thumb, which may lead to an inefficient inference. We here propose a selection criterion based on an asymptotic approximation of the Hyvarinen score applied to an unnormalized model defined by robust divergence. The proposed selection criterion only requires first and second-order partial derivatives of an assumed density function with respect to observations, which can be easily computed regardless of the number of parameters. We demonstrate the usefulness of the proposed method via numerical studies using normal distributions and regularized linear regression.


2021 ◽  
pp. 096228022110172
Author(s):  
Abhik Ghosh ◽  
Magne Thoresen

Variable selection in ultra-high dimensional regression problems has become an important issue. In such situations, penalized regression models may face computational problems and some pre-screening of the variables may be necessary. A number of procedures for such pre-screening has been developed; among them the Sure Independence Screening (SIS) enjoys some popularity. However, SIS is vulnerable to outliers in the data, and in particular in small samples this may lead to faulty inference. In this paper, we develop a new robust screening procedure. We build on the density power divergence (DPD) estimation approach and introduce DPD-SIS and its extension iterative DPD-SIS. We illustrate the behavior of the methods through extensive simulation studies and show that they are superior to both the original SIS and other robust methods when there are outliers in the data. Finally, we illustrate its use in a study on regulation of lipid metabolism.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 367
Author(s):  
Byungsoo Kim ◽  
Sangyeol Lee ◽  
Dongwon Kim

In the integer-valued generalized autoregressive conditional heteroscedastic (INGARCH) models, parameter estimation is conventionally based on the conditional maximum likelihood estimator (CMLE). However, because the CMLE is sensitive to outliers, we consider a robust estimation method for bivariate Poisson INGARCH models while using the minimum density power divergence estimator. We demonstrate the proposed estimator is consistent and asymptotically normal under certain regularity conditions. Monte Carlo simulations are conducted to evaluate the performance of the estimator in the presence of outliers. Finally, a real data analysis using monthly count series of crimes in New South Wales and an artificial data example are provided as an illustration.


Stats ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 88-107
Author(s):  
Alfio Marazzi

The distance constrained maximum likelihood procedure (DCML) optimally combines a robust estimator with the maximum likelihood estimator with the purpose of improving its small sample efficiency while preserving a good robustness level. It has been published for the linear model and is now extended to the GLM. Monte Carlo experiments are used to explore the performance of this extension in the Poisson regression case. Several published robust candidates for the DCML are compared; the modified conditional maximum likelihood estimator starting with a very robust minimum density power divergence estimator is selected as the best candidate. It is shown empirically that the DCML remarkably improves its small sample efficiency without loss of robustness. An example using real hospital length of stay data fitted by the negative binomial regression model is discussed.


Entropy ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1304
Author(s):  
Sangyeol Lee ◽  
Dongwon Kim

In this study, we consider an online monitoring procedure to detect a parameter change for integer-valued generalized autoregressive heteroscedastic (INGARCH) models whose conditional density of present observations over past information follows one parameter exponential family distributions. For this purpose, we use the cumulative sum (CUSUM) of score functions deduced from the objective functions, constructed for the minimum power divergence estimator (MDPDE) that includes the maximum likelihood estimator (MLE), to diminish the influence of outliers. It is well-known that compared to the MLE, the MDPDE is robust against outliers with little loss of efficiency. This robustness property is properly inherited by the proposed monitoring procedure. A simulation study and real data analysis are conducted to affirm the validity of our method.


Sign in / Sign up

Export Citation Format

Share Document