Impacts of channel wall twisting on the mixing enhancement of a novel spiral micromixer

2021 ◽  
Author(s):  
Dariush Bahrami ◽  
Morteza Bayareh
Author(s):  
Dong Jin Kang

A new design scheme is proposed for twisting the walls of a microchannel, and its performance is demonstrated numerically. The numerical study was carried out for a T-shaped microchannel with twist angles in the range of 0 to 34π. The Reynolds number range was 0.15 to 6. The T-shaped microchannel consists of two inlet branches and an outlet branch. The mixing performance was analyzed in terms of the degree of mixing and relative mixing cost. All numerical results show that the twisting scheme is an effective way to enhance the mixing in a T-shaped microchannel. The mixing enhancement is realized by the swirling of two fluids in the cross section and is more prominent as the Reynolds number decreases. The twist angle was optimized to maximize the DOM, which increases with the length of the outlet branch. The twist angle was also optimized in terms of the relative mixing. The two optimum twisting angles are generally not coincident. The optimum twist angle shows a dependence on the length of the outlet branch but it is not affected much by the Reynolds number.


Micromachines ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 26 ◽  
Author(s):  
Dong Jin Kang

A new design scheme is proposed for twisting the walls of a microchannel, and its performance is demonstrated numerically. The numerical study was carried out for a T-shaped microchannel with twist angles in the range of 0 to 34π. The Reynolds number range was 0.15 to 6. The T-shaped microchannel consists of two inlet branches and an outlet branch. The mixing performance was analyzed in terms of the degree of mixing and relative mixing cost. All numerical results show that the twisting scheme is an effective way to enhance the mixing in a T-shaped microchannel. The mixing enhancement is realized by the swirling of two fluids in the cross section and is more prominent as the Reynolds number decreases. The twist angle was optimized to maximize the degree of mixing (DOM), which increases with the length of the outlet branch. The twist angle was also optimized in terms of the relative mixing cost (MC). The two optimum twisting angles are generally not coincident. The optimum twist angle shows a dependence on the length of the outlet branch but it is not affected much by the Reynolds number.


2020 ◽  
Author(s):  
Collin Megee ◽  
◽  
Michael O'Neal ◽  
Joseph Clemens ◽  
Erica McMaster ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 320
Author(s):  
Taewoo Lee ◽  
Sung-Yong Park

We present experimental studies of alternating current (AC) electrowetting dominantly influenced by several unique characteristics of an ion gel dielectric in its capacitance. At a high-frequency region above 1 kHz, the droplet undergoes the contact angle modification. Due to its high-capacitance characteristic, the ion gel allows the contact angle change as large as Δθ = 26.4°, more than 2-fold improvement, compared to conventional dielectrics when f = 1 kHz. At the frequency range from 1 to 15 kHz, the capacitive response of the gel layer dominates and results in a nominal variation in the angle change as θ ≈ 90.9°. Above 15 kHz, such a capacitive response of the gel layer sharply decreases and leads to the drastic increase in the contact angle. At a low-frequency region below a few hundred Hz, the droplet’s oscillation relying on the AC frequency applied was mainly observed and oscillation performance was maximized at corresponding resonance frequencies. With the high-capacitance feature, the ion gel significantly enlarges the oscillation performance by 73.8% at the 1st resonance mode. The study herein on the ion gel dielectric will help for various AC electrowetting applications with the benefits of mixing enhancement, large contact angle modification, and frequency-independent control.


Sign in / Sign up

Export Citation Format

Share Document