scholarly journals Assessment of Seawater Intrusion in Coastal Aquifers Using Multivariate Statistical Analyses and Hydrochemical Facies Evolution-Based Model

Author(s):  
Soumaya Hajji ◽  
Nabila Allouche ◽  
Salem Bouri ◽  
Awad M. Aljuaid ◽  
Wafik Hachicha

Groundwater (GW) studies have been conducted worldwide with regard to several pressures, including climate change, seawater intrusion, and water overexploitation. GW quality is a very important sector for several countries in the world, in particular for Tunisia. The shallow coastal aquifer of Sfax (located in Tunisia) was found to be under the combined conditions of continuous drop in GW and further deterioration of the groundwater quality (GWQ). This study was conducted to identify the processes that control GWQ mainly in relation to mineralization sources in the shallow Sfax coastal aquifer. To perform this task, 37 wells are considered. Data include 10 physico-chemical properties of groundwater analyzed in water samples: pH, EC, calcium (Ca), sodium (Na), magnesium (Mg), potassium (K), chloride (Cl), sulfate (SO4), bicarbonate (HCO3), and nitrate (NO3), i.e., investigation was based on a database of 370 observations. Principal component analysis (PCA) and hydrochemical facies evolution (HFE) were conducted to extract the main factors affecting GW chemistry. The results obtained using the PCA model show that GWQ is mainly controlled by either natural factors (rock–water interactions) or anthropogenic ones (agricultural and domestic activities). Indeed, the GW overexploitation generated not only the GWQ degradation but also the SWI. The inverse distance weighted (IDW) method, integrated in a geographic information system (GIS), is employed to achieve spatial mapping of seawater intrusion locations. Hydrochemical facies evolution (HFE) results corroborate the seawater intrusion and its spatial distribution. Furthermore, the mixing ratio showed that Jebeniana and Chaffar–Mahares localities are characterized by high SWI hazard. This research should be done to better manage GW resources and help to develop a suitable plan for the exploitation and protection of water resources.

2017 ◽  
Author(s):  
Huijun Gu ◽  
Xin Sui ◽  
Guogang Zhang ◽  
Meiqing Jia

Dredger-fill silt has been used in the port of Tianjin, China to reclaim land; however, the dredger-fill silt has no soil ecological function. Translating the silt into soil rapidly and accelerating the soil-forming process are key to solving the ecological problems of the Dredge–Fill project. This study measured 15 chemical properties of the dredger-fill silt for 8 years of the soil forming process to explore fertility changes and the critical factors affecting soil formation. The results showed that: (1) the salinity of silt changed from severe to mild with a reduction in Na+ and Cl- concentration. Other ion concentrations changed slightly. (2) Effective nutrients significantly decreased during soil formation. Soil organic matter (SOM),the nitrate-nitrogen, available phosphorus (A-P) and available potassium (A-K) decreased by 26.22%, 86.23%, 45.92%, 33.61% respectively, indicating severe nutrients loss. (3) Principal component analysis showed that silt fertility decreased significantly and the total soil fertility loss was severe. This study has significance for the artificial improvement of silt.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Pandian Suresh Kumar ◽  
Jibu Thomas

Abstract The present investigation embarks on understanding the relationship between microalgal species assemblages and their associated physico-chemical parameter dynamics of the catchment region of river Noyyal. Totally, 142 microalgae cultures belonging to 10 different families were isolated from five different sites during four seasons and relative percentage distribution showed that Scenedesmaceae (36.6%) and site S1 (26.4%) with predominant microalgae population. Diversity indices revealed that microalgae communities were characterized by high Hʹ index, lower Simpson dominance, and Margalef index value with indefinite patterns of annual variations. Results showed that variation in the physico-chemical parameters in each sampling site has its impact on the microalgae population during each season. Multivariate statistical analysis viz., Karl Pearson’s correlation coefficient, principal component analysis, and canonical correspondence analysis were applied on microalgae species data, to evaluate the seasonal relationship between microalgae and physico-chemical parameters. The findings of our study concluded that the physico- chemical parameters influenced the dominant taxa of microalgae Chlorellaceae, Scenedesmaceae and Chlorococcaceae in river Noyyal and gives a base data for the seasonal and dynamic relationship between environmental parameters and microalgae population.


BMC Ecology ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ayoub Hallouti ◽  
Mohamed Ait Hamza ◽  
Abdelaziz Zahidi ◽  
Rachid Ait Hammou ◽  
Rachid Bouharroud ◽  
...  

Abstract Background Studying the ecology of biocontrol-agents is a prerequisite to effectively control medfly (Ceratitis capitata (Diptera: Tephritidae)) with entomopathogenic fungi. In this context, factors affecting the occurrence and distribution of medfly-associated entomopathogenic-fungi were studied. Soil samples (22) were collected from natural and cultivated areas of Souss-region Morocco. Results A total of 260 fungal isolates belonging to 22 species and 10 genera were obtained by using medfly pupae as bait. Medfly-associated fungi were detected in all studied soils and pupae infection percentages ranged from 3.33% to 48%. Two genera, Fusarium and Beauveria were the most frequent with 83 isolates (32%) and 50 isolates (19.23%) respectively. Pathogenicity test of isolated species against medfly pupae showed high mortality rates up to 91% for some strains. Principal component analysis (PCA) demonstrated a strong influence of origin, physical, and chemical properties of soil on the abundance of these fungi. In general, medfly-associated fungi were more abundant in soils with moderate pH (7.5 to 8) having high sand and organic content. High relative humidity negatively influenced the abundance of these fungi. Both factors directly affected the fungal infection percentages in pupae. The response of fungi to these parameters varied among species. According to principal component analysis (PCA), the soils of argan fields and forests were more suitable for the development of medfly-associated fungi than citrus orchards. Conclusions These results guide identifying suitable soils for the effective application of entomopathogenic fungi as biological control agents. In summary, isolated indigenous strains seem to be a promising option to control C. capitata.


1995 ◽  
Vol 1 (2-3) ◽  
pp. 97-104 ◽  
Author(s):  
S. Porretta

The physico-chemical properties of commercial canned whole tomatoes (i.e., peeled tomatoes with about 30% tomato juice as packing medium) and the contribution of various analytical parameters to some sensory attributes were evaluated using multivariate statistical analysis. In addition, cluster analysis was used to determine the existence of significant qualitative differences between the old and famous San Marzano variety (as described on the commercial labels by the manufacturers) and traditional (without any specification on the tomato variety) canned whole tomatoes.


2017 ◽  
Vol 20 (2) ◽  
Author(s):  
SIMONA GHINITA CONSTANTIN ◽  
MIRELA PRAISLER ◽  
GABRIELA IORDĂCHESCU

<p>Thyme (<em>Satureja hortensis</em>) is a popular spice for food, which is also often used as a medicine for various ailments. This paper presents an artificial intelligence method applied for the objective determination of the most important physico-chemical variables affecting the quality of thyme, i.e. Principal Component Analysis (PCA). The results show that the main properties which significantly influence the nutritional value of thyme are moisture (MOIST), dry matter content (DRYM), protein content (PROT) and, to a lesser extent, carbohydrate content (CARB). Humidity is strongly and negatively correlated with the latter three variables. The main variable that ensures the similarity between the thyme samples having the same geographical origin is the monosodium glutamate content, which generates its delicious (umami) taste.</p>


Author(s):  
Mehmet Taşan ◽  
Yusuf Demir ◽  
Sevda Taşan

Abstract This study assessed groundwater quality in Alaçam, where irrigations are performed solely with groundwaters and samples were taken from 35 groundwater wells at pre and post irrigation seasons in 2014. Samples were analyzed for 18 water quality parameters. SAR, RSC and %Na values were calculated to examine the suitability of groundwater for irrigation. Hierarchical cluster analysis and principal component analysis were used to assess the groundwater quality parameters. The average EC value of groundwater in the pre-irrigation period was 1.21 dS/m and 1.30 dS/m after irrigation in the study area. It was determined that there were problems in two wells pre-irrigation and one well post-irrigation in terms of RSC, while there was no problem in the wells in terms of SAR. Piper diagram and cluster analysis showed that most groundwaters had CaHCO3 type water characteristics and only 3% was NaCl- as the predominant type. Seawater intrusion was identified as the primary factor influencing groundwater quality. Multivariate statistical analyses to evaluate polluting sources revealed that groundwater quality is affected by seawater intrusion, ion exchange, mineral dissolution and anthropogenic factors. The use of multivariate statistical methods and geographic information systems to manage water resources will be beneficial for both planners and decision-makers.


2008 ◽  
Vol 59 (7) ◽  
Author(s):  
Corina Costescu ◽  
Nicoleta Gabriela Hadaruga ◽  
Daniel Ioan Hadaruga ◽  
Adrian Rivis ◽  
Aurel Ardelean ◽  
...  

The paper presents a multivariate analysis (PCA-principal component analysis) of the essential oils from Dicotyledonatae and Pinatae classes encapsulated in b-cyclodextrin. The essential oil/b--cyclodextrin complexes were obtained by solution method. Uncomplexed volatile oils and complexes with b--cyclodextrin were analyzed by gas chromatography-mass spectrometry (GC-MS) and thermogravimetry (TG), respectively. In order to evaluate the composition of the encapsulated oil, this was extracted from the complex and analyzed by GC-MS. For the GC data of the uncomplexed essential oils and the complexed ones, a powerful multivariate statistical procedure (PCA) was applied. Samples were very good classified in botanical classes or in uncomplexed and complexed ones using the GC data of the monoterpene compounds.


2016 ◽  
Vol 20 (4) ◽  
pp. 1 ◽  
Author(s):  
Arveti Nagaraju ◽  
Arveti Thejaswi ◽  
Yenamala Sreedhar

Hydrogeochemical studies were carried out in and around Udayagiri area of Andhra Pradesh in order to assess the chemistry of the groundwater and to identify the dominant hydrogeochemical processes and mechanisms responsible for the evolution of the chemical composition of the groundwater. Descriptive statistics, correlation matrices, principal component analysis (PCA), together with cluster analysis (CA) were used to gain an understanding of the hydrogeochemical processes in the study area. PCA has identified 4 main processes influencing the groundwater chemistry viz., mineral precipitation and dissolution, seawater intrusion, cation exchange, and carbonate balance. Further, three clusters C1, C2 and C3 were obtained. Samples from C1 contain high level of Cl− and may be due to the intensive evaporation and contamination from landfill leachate. Most of the samples from C2 are located closer to the sea and the high level of Na+ +K+ in these samples may be attributed to seawater intrusion. The geochemistry of water samples in C3 are more likely to originate from rock weathering. This has been supported by Gibbs diagram. The groundwater geochemistry in the study area is mostly of natural origin, but is influenced to some degree by human activity.  Evaluación de la calidad del agua subterránea a través de técnicas estadísticas multivariadas en el área Udayagiri, distrito Nellore, Andhra Pradesh, en el sur de IndiaResumenSe realizaron estudios hidrogeoquímicos en y alrededor del área Udayagiri de Andhra Pradesh para evaluar la química del agua subterránea e identificar los procesos hidrogeoquímicos dominantes y los mecanismos responsables de la evolución en la composición química del agua subterránea. Se utilizaron estadísticas descriptivas, matrices de correlación, análisis de componentes principales, al igual que análisis de grupos, para obtener y entender los procesos hidrogeoquímicos en el área de estudio. Los análisis de componentes principales identificaron cuatro procesos determinantes que influenciaron la química del agua subterránea, estos son, la precipitación y disolución de minerales, l intrusión de agua marina, el intercambio de cationes y el equilibrio de carbonatos. De esta forma se obtuvieron tres grupos, C1, C2, y C3. Las muestras del grupo C1 contienen un alto nivel de Cl- , lo que podría deberse a la intensa evaporación y contaminación de los lixiviados de rellenos sanitarios. Muchas de las muestras del grupo C2 se ubican cerca del mar y el alto nivel de Na++K+ podría atriburise a la intrusión de agua marina. La geoquímica de las muestras de agua en el grupo C3 probablemente se desprende de la meteorización de rocas. El diagrama de Gibbs valida estos resultados. La geoquímica del agua subterránea en el área de estudio es principalmente de origen natural pero también está influenciado por la actividad humana en algún grado.


Sign in / Sign up

Export Citation Format

Share Document