fticr mass spectrometry
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 11)

H-INDEX

31
(FIVE YEARS 3)

Author(s):  
Hugh E. Jones ◽  
Diana Catalina Palacio Lozano ◽  
Chris Huener ◽  
Mary J. Thomas ◽  
David J. Aaserud ◽  
...  

2020 ◽  
Vol 31 (12) ◽  
pp. 2773-2792
Author(s):  
Markus Sellmayr ◽  
Moritz Roman Hernandez Petzsche ◽  
Qiuyue Ma ◽  
Nils Krüger ◽  
Helen Liapis ◽  
...  

BackgroundThe roles of asymptomatic hyperuricemia or uric acid (UA) crystals in CKD progression are unknown. Hypotheses to explain links between UA deposition and progression of CKD include that (1) asymptomatic hyperuricemia does not promote CKD progression unless UA crystallizes in the kidney; (2) UA crystal granulomas may form due to pre-existing CKD; and (3) proinflammatory granuloma-related M1-like macrophages may drive UA crystal-induced CKD progression.MethodsMALDI-FTICR mass spectrometry, immunohistochemistry, 3D confocal microscopy, and flow cytometry were used to characterize a novel mouse model of hyperuricemia and chronic UA crystal nephropathy with granulomatous nephritis. Interventional studies probed the role of crystal-induced inflammation and macrophages in the pathology of progressive CKD.ResultsAsymptomatic hyperuricemia alone did not cause CKD or drive the progression of aristolochic acid I-induced CKD. Only hyperuricemia with UA crystalluria due to urinary acidification caused tubular obstruction, inflammation, and interstitial fibrosis. UA crystal granulomas surrounded by proinflammatory M1-like macrophages developed late in this process of chronic UA crystal nephropathy and contributed to the progression of pre-existing CKD. Suppressing M1-like macrophages with adenosine attenuated granulomatous nephritis and the progressive decline in GFR. In contrast, inhibiting the JAK/STAT inflammatory pathway with tofacitinib was not renoprotective.ConclusionsAsymptomatic hyperuricemia does not affect CKD progression unless UA crystallizes in the kidney. UA crystal granulomas develop late in chronic UA crystal nephropathy and contribute to CKD progression because UA crystals trigger M1-like macrophage-related interstitial inflammation and fibrosis. Targeting proinflammatory macrophages, but not JAK/STAT signaling, can attenuate granulomatous interstitial nephritis.


2020 ◽  
Author(s):  
Christian ROLANDO ◽  
Carlos Afonso ◽  
Marie Hubert-Roux ◽  
ziad mahmoud ◽  
michel SABLIER ◽  
...  

Polybutadiene (PB) and Polyisoprene (PI) the two most common polydienes (PD), are involved in a large number of materials and used in a wide variety of applications. The characterization of these polymers by mass spectrometry (MS) continues to be very challenging due to their high insolubility and the difficulty to ionize them. In this work, cross-metathesis reaction was used to generate end-functionalized acetoxy ionizable oligomers for the structural deciphering of different commercial PB and PI samples. A cross-metathesis reaction was carried out between polymers and the <i>Z</i>-1,4-diacetoxy-2-butene as chain transfer agent in dichloromethane using Hoveyda-Grubbs second-generation catalyst. Well-defined acetoxy telechelic structures were obtained and analysed by Fourier-Transform ion cyclotron resonance (FTICR) high resolution MS. However, after depolymerization, low molar mass polyolefins contained some units with different configurations, suggesting an olefin isomerization reaction due to the decomposition of the catalyst. The addition of an electron-deficient reagent such as 2,6-dichloro-1,4-benzoquinone suppressed this isomerization in the case of both <i>Z</i>- and <i>E-</i> PB and PI. Ion-mobility spectrometry-mass spectrometry (IMS-MS) and energy resolved tandem mass spectrometry (ERMS) analyses confirmed a successful isomerization suppression. For comparing the results obtained by depolymerisation with classical methods for polymer analysis, pyrolysis-comprehensive two-dimensional gas chromatography/mass spectrometry (Py-GC×GC-MS), atmospheric solid analysis probe (ASAP) and DIP-APCI analyses were performed on the same polymers. This strategy can be applied on a variety of synthetic and natural not yet characterized polymers.


2020 ◽  
Author(s):  
Christian ROLANDO ◽  
Carlos Afonso ◽  
Marie Hubert-Roux ◽  
ziad mahmoud ◽  
michel SABLIER ◽  
...  

Polybutadiene (PB) and Polyisoprene (PI) the two most common polydienes (PD), are involved in a large number of materials and used in a wide variety of applications. The characterization of these polymers by mass spectrometry (MS) continues to be very challenging due to their high insolubility and the difficulty to ionize them. In this work, cross-metathesis reaction was used to generate end-functionalized acetoxy ionizable oligomers for the structural deciphering of different commercial PB and PI samples. A cross-metathesis reaction was carried out between polymers and the <i>Z</i>-1,4-diacetoxy-2-butene as chain transfer agent in dichloromethane using Hoveyda-Grubbs second-generation catalyst. Well-defined acetoxy telechelic structures were obtained and analysed by Fourier-Transform ion cyclotron resonance (FTICR) high resolution MS. However, after depolymerization, low molar mass polyolefins contained some units with different configurations, suggesting an olefin isomerization reaction due to the decomposition of the catalyst. The addition of an electron-deficient reagent such as 2,6-dichloro-1,4-benzoquinone suppressed this isomerization in the case of both <i>Z</i>- and <i>E-</i> PB and PI. Ion-mobility spectrometry-mass spectrometry (IMS-MS) and energy resolved tandem mass spectrometry (ERMS) analyses confirmed a successful isomerization suppression. For comparing the results obtained by depolymerisation with classical methods for polymer analysis, pyrolysis-comprehensive two-dimensional gas chromatography/mass spectrometry (Py-GC×GC-MS), atmospheric solid analysis probe (ASAP) and DIP-APCI analyses were performed on the same polymers. This strategy can be applied on a variety of synthetic and natural not yet characterized polymers.


2019 ◽  
Vol 30 (10) ◽  
pp. 2123-2134 ◽  
Author(s):  
Frederik Lermyte ◽  
James Everett ◽  
Yuko P. Y. Lam ◽  
Christopher A. Wootton ◽  
Jake Brooks ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document