cellulose esters
Recently Published Documents


TOTAL DOCUMENTS

279
(FIVE YEARS 27)

H-INDEX

30
(FIVE YEARS 1)

2022 ◽  
Vol 58 (4) ◽  
pp. 47-54
Author(s):  
Gheorghe Batrinescu ◽  
Ioana-Alexandra Ionescu ◽  
Roxana-Elena Scutariu ◽  
Bogdan Chiricuta ◽  
Ionut Cristian Surupaceanu

Results obtained from the characterization of three water samples (one representing the effluent of a municipal treatment plant and the two others representing surface water from the Jiu River/Romania, upstream and downstream of the effluent discharge point) are presented in this study in terms of microplastic content. The water samples were processed by successively passing them through a series of filters with the following dimensions: 5 mm, 0.5 mm (500 im), 0.1 mm (100 im) and then through some microfiltration membranes (MF) type EZ-Pak Membrane Filters (Merk-Millipore) made of a mixture of cellulose esters, with an average pore diameter of 0.45�m. In order to highlight the microplastics in the water samples, their analysis was performed as well as the solid material retained on the microfiltration membranes, by scanning electron microscopy (SEM) using a SEM Quanta FEG 250/Thermo Fischer Scientific. The results obtained highlighted the existence of microplastics in all the analyzed samples, in the known forms presented in the specialized literature: irregular planes, fibers and spheres. Their dimensions are variable, ranging between 3.2 �m and 119.5 �m for irregular plane microplastics and between 3 �m and 15 �m for spherical microplastics. The dimensions of microplastics in the form of fibers are also in the range of tens of �m and cannot be established exactly because in most cases they appear in the form of conglomerates. The treatment plant�s microplastic effluents content led to the modification of the physical-chemical indicators of the water in their natural receptor. Thus, the content of organic matter and total suspended matter in the downstream water compared to the effluent discharge point is higher than in the upstream water. The analysis of microplastics by SEM allows only their highlighting and their geometry, being a first step in the study of the pollution induced by such materials.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4397
Author(s):  
Jacqueline Lease ◽  
Tessei Kawano ◽  
Yoshito Andou

Mechanochemical reaction, a green synthetic esterification route was utilized to prepare long-chain cellulose esters from microcrystalline cellulose. The influence of reaction conditions such as reaction temperature and time were elucidated. Only low dosage of oleic acid, 1-butyl-3-metylimidazolium acetate, and p-toluenesulfonyl chloride were required. The success of modification reaction was confirmed by Fourier transforms infrared spectroscopy as a new absorbance peak at 1731 cm−1 was observed, which indicated the formation of carbonyl group (C=O). Solid-state nuclear magnetic resonance was also performed to determine the structural property and degree of substitution (DS) of the cellulose oleate. Based on the results, increasing reaction temperature and reaction time promoted the esterification reaction and DS. DS values of cellulose oleates slightly decreased after 12 h reaction time. Besides, X-ray diffraction analysis showed the broadening of the diffraction peaks and thermal stability decreased after esterification. Hence, the findings suggested that grafting of oleic acid’s aliphatic chain onto the cellulose backbone lowered the crystallinity and thermal stability.


2021 ◽  
pp. 179106
Author(s):  
Costas Tsioptsias ◽  
Eleni G. Nikolaidou ◽  
Xanthi Ntampou ◽  
Ioannis Tsivintzelis ◽  
Costas Panayiotou
Keyword(s):  

BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 7592-7607
Author(s):  
Yu Liu ◽  
Fangfang Wang ◽  
Yangyang Sun

A novel synthesis method was developed for betaine-modified cellulose ester using a mixed N,N-dimethylacetamide/lithium chloride solvent system; p-toluenesulfonyl chloride was used for the in-situ activation of the betaine. The influence of the reaction temperature and time, as well as the anhydroglucose unit to p-toluenesulfonyl chloride to betaine mass ratio on the degree of substitution of the product was evaluated. Increasing the proportion of betaine and p-toluenesulfonyl chloride was beneficial to the esterification reaction. The degree of substitution was 1.68 at 90 °C for 32 h with an anhydroglucose unit to p-toluenesulfonyl chloride to betaine molar ratio of 1 to 2 to 3. The physicochemical properties of the betaine-modified cellulose were closely related to the degree of substitution. Major changes in the morphologies, crystallinity, thermal properties, porosity, and the average degree of polymerization resulted from the modification. The introduction of betaine made cellulose esters thermally less stable than neat cellulose but more difficult to completely degrade. The crystalline structure of the cellulose esters was destroyed, and the products exhibited a porous nature. Dye sorption studies demonstrated that the betaine-modified cellulose holds the potential of adsorbing anionic substances, which is the premise of its application.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2644
Author(s):  
Anatoly E. Chalykh ◽  
Ivan I. Bardyshev ◽  
Tatiana F. Petrova

The results ofthe sorption properties of cellulose acetate (CA) with different degrees of substitution (SD) are summarised. It has been shown that the sorption capacity of CA in water vapour decreases naturally with increasing content of acetate groups in monomeric units of cellulose ethers. The experimental isotherms are analysed according to the double sorption model. Hydrate numbers of hydroxyl and acetate groups were determined. The paired parameters of the Flory–Huggins interaction were calculated. It is shown that the decrease of the Langmuir component is due to the replacement of hydroxyl groups by ester groups, whose local sorption capacity by water vapour is lower than the sorption capacity of OH groups. In the area of high humidity, there is an increase in vacancy sizes due to plasticisation of the sorbents.


2021 ◽  
pp. 118031
Author(s):  
Giacomo Tedeschi ◽  
Susana Guzman-Puyol ◽  
Luca Ceseracciu ◽  
José J. Benitez ◽  
Luca Goldoni ◽  
...  
Keyword(s):  

2021 ◽  
Vol 37 (2) ◽  
pp. 181-200
Author(s):  
Paweł Wasilewski

Tungsten is a transition metal which occurs in the Earth’s crust as minerals which after being mined is extracted. There is no data on chronic effects of contact with tungsten, although fine tungsten powder is flammable and can cause mechanical irritation to skin and eyes. However, there are soluble tungsten compounds, which are classified as toxic, causing damage to the eyes, and being harmful to the aquatic environment. The aim of the study was to amend Standard No. PN-Z-04221-3 determination of soluble tungsten compounds in workplace air using spectrophotometric method with potassium thiocyanate. The amendment was performed because Standard No. PN-Z-04221-3 describes a method in which the quantification is 0.25 mg/m3, according to European Standard No. EN 482 the quantification of method must be in range of 0.1 – 2 mg/m3. The method is based on depositing soluble tungsten compounds on a cellulose esters filter and then dissolving them in water. Then tungsten is reduced with tin chloride, after reaction with potassium thiocyanate, tungsten becomes a complex. Tungsten complex should be extracted with isoamyl alcohol and then absorbance should be measured on a UV-Vis spectrophotometer. The tests were performed with the UV-Vis Heλios spectrophotometer by ThermoSpectronic model Beta. The validation requirements of European Standard No. EN 482 were met. With this method soluble tungsten compounds in air can be determined at concentration of 0.1 – 2 mg/m3. The limit of quantification (LOQ) is 1.875 ng. The overall accuracy of the method is 5.06% and its relative total uncertainty is 22.09%. The method for determining tungsten has been recorded in a form of an analytical procedure (see Appendix). This article discusses problems of occupational safety and health, which are covered by health sciences and environmental engineering.


Author(s):  
Samuel Budi Wardhana Kusuma ◽  
Daisuke Hirose ◽  
Akina Yoshizawa ◽  
László Szabó ◽  
Daiki Ina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document