temporal polyethism
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 0)

H-INDEX

14
(FIVE YEARS 0)

2019 ◽  
Vol 66 (2) ◽  
pp. 317-328 ◽  
Author(s):  
S. Mateus ◽  
M. J. Ferreira-Caliman ◽  
C. Menezes ◽  
C. Grüter


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2155 ◽  
Author(s):  
Frank D. Rinkevich ◽  
Joseph W. Margotta ◽  
Jean M. Pittman ◽  
James A. Ottea ◽  
Kristen B. Healy

Background.The age of an insect strongly influences many aspects of behavior and reproduction. The interaction of age and behavior is epitomized in the temporal polyethism of honey bees in which young adult bees perform nurse and maintenance duties within the colony, while older bees forage for nectar and pollen. Task transition is dynamic and driven by colony needs. However, an abundance of precocious foragers or overage nurses may have detrimental effects on the colony. Additionally, honey bee age affects insecticide sensitivity. Therefore, determining the age of a set of individual honey bees would be an important measurement of colony health. Pteridines are purine-based pigment molecules found in many insect body parts. Pteridine levels correlate well with age, and wild caught insects may be accurately aged by measuring pteridine levels. The relationship between pteridines and age varies with a number of internal and external factors among many species. Thus far, no studies have investigated the relationship of pteridines with age in honey bees.Methods.We established single-cohort colonies to obtain age-matched nurse and forager bees. Bees of known ages were also sampled from colonies with normal demographics. Nurses and foragers were collected every 3–5 days for up to 42 days. Heads were removed and weighed before pteridines were purified and analyzed using previously established fluorometric methods.Results.Our analysis showed that pteridine levels significantly increased with age in a linear manner in both single cohort colonies and colonies with normal demography. Pteridine levels were higher in foragers than nurses of the same age in bees from single cohort colonies. Head weight significantly increased with age until approximately 28-days of age and then declined for both nurse and forager bees in single cohort colonies. A similar pattern of head weight in bees from colonies with normal demography was observed but head weight was highest in 8-day old nurse bees and there was no relationship of head weight with age of foragers.Discussion.Although the relationship between pteridine levels and age was significant, variation in the data yielded a +4-day range in age estimation. This allows an unambiguous method to determine whether a bee may be a young nurse or old forager in colonies with altered demographics as in the case of single cohort colonies. Pteridine levels in bees do not correlate with age as well as in other insects. However, most studies used insects reared under tightly controlled laboratory conditions, while we used free-living bees. The dynamics of head weight change with age is likely to be due to growth and atrophy of the hypopharyngeal glands. Taken together, these methods represent a useful tool for assessing the age of an insect. Future studies utilizing these methods will provide a more holistic view of colony health.



2016 ◽  
Author(s):  
Frank D Rinkevich ◽  
Joseph W Margotta ◽  
Jean M Pittman ◽  
James A Ottea ◽  
Kristen B Healy

Background. The age of an insect strongly influences many aspects of behavior and reproduction. This interaction is epitomized in the temporal polyethism of honey bees in which young adult bees perform nurse and maintenance duties within the colony, while older bees forage for nectar and pollen. Task transition is dynamic and is driven by colony needs. However, an abundance of precocious foragers or overage nurses may have detrimental effects on the colony. Additionally, honey bee age affects insecticide sensitivity. Therefore, determining the age of an individual honey bee would be important to provide a measurement of colony health. Pteridines are purine-based pigment molecules found in many insect body parts. Pteridine levels correlate well with age, and wild caught insects may be accurately aged by measuring pteridine levels. The relationship between pteridines and age varies with a number of internal and external factors among many species. Thus far, no studies have investigated the relationship of pteridines with age in honey bees. Methods. We established single-cohort colonies to obtain age-matched nurse and forager bees. Nurses and foragers were collected every 3-5 days for up to 42 days. Heads were removed and weighed before pteridines were purified and analyzed using previously established fluorometric methods. Results. Our analysis showed that pteridine levels were higher in foragers than nurses of the same age, and pteridine levels significantly increased with age in a linear manner. Head weight significantly varied with age increasing until approximately 28 days of age, then declining thereafter for both nurse and forager bees. Discussion. Although the relationship between pteridine levels and age was significant, a large amount of variation in the data yielded an 8-day window in age estimation. This allows an unambiguous method to determine whether a bee may be a young nurse or old forager. Pteridine levels in bees do not correlate with age as well as in other insects. However, most studies used insects reared under tightly controlled laboratory conditions, while we used free-living bees. The dynamics of head weight change with age is likely to be due to growth and atrophy of the hypopharyngeal glands. Taken together, these methods represent a useful tool for assessing colony demography after a colony experiences a stress event. Future studies utilizing these methods will provide a more holistic view of colony health.



2016 ◽  
Author(s):  
Frank D Rinkevich ◽  
Joseph W Margotta ◽  
Jean M Pittman ◽  
James A Ottea ◽  
Kristen B Healy

Background. The age of an insect strongly influences many aspects of behavior and reproduction. This interaction is epitomized in the temporal polyethism of honey bees in which young adult bees perform nurse and maintenance duties within the colony, while older bees forage for nectar and pollen. Task transition is dynamic and is driven by colony needs. However, an abundance of precocious foragers or overage nurses may have detrimental effects on the colony. Additionally, honey bee age affects insecticide sensitivity. Therefore, determining the age of an individual honey bee would be important to provide a measurement of colony health. Pteridines are purine-based pigment molecules found in many insect body parts. Pteridine levels correlate well with age, and wild caught insects may be accurately aged by measuring pteridine levels. The relationship between pteridines and age varies with a number of internal and external factors among many species. Thus far, no studies have investigated the relationship of pteridines with age in honey bees. Methods. We established single-cohort colonies to obtain age-matched nurse and forager bees. Nurses and foragers were collected every 3-5 days for up to 42 days. Heads were removed and weighed before pteridines were purified and analyzed using previously established fluorometric methods. Results. Our analysis showed that pteridine levels were higher in foragers than nurses of the same age, and pteridine levels significantly increased with age in a linear manner. Head weight significantly varied with age increasing until approximately 28 days of age, then declining thereafter for both nurse and forager bees. Discussion. Although the relationship between pteridine levels and age was significant, a large amount of variation in the data yielded an 8-day window in age estimation. This allows an unambiguous method to determine whether a bee may be a young nurse or old forager. Pteridine levels in bees do not correlate with age as well as in other insects. However, most studies used insects reared under tightly controlled laboratory conditions, while we used free-living bees. The dynamics of head weight change with age is likely to be due to growth and atrophy of the hypopharyngeal glands. Taken together, these methods represent a useful tool for assessing colony demography after a colony experiences a stress event. Future studies utilizing these methods will provide a more holistic view of colony health.



2015 ◽  
Vol 70 (7) ◽  
pp. 1019-1031 ◽  
Author(s):  
Myrsini E. Natsopoulou ◽  
Dino P. McMahon ◽  
Robert J. Paxton


2013 ◽  
Vol 67 (10) ◽  
pp. 1623-1632 ◽  
Author(s):  
Adam J. Siegel ◽  
M. Kim Fondrk ◽  
Gro V. Amdam ◽  
Robert E. Page


Sociobiology ◽  
2013 ◽  
Vol 60 (1) ◽  
Author(s):  
Viviana De Oliveira Torres ◽  
Edilberto Gianotti ◽  
Willian Fernando Antonialli-Jr.




Author(s):  
Heather J. Goldsby ◽  
Neem Serra ◽  
Fred Dyer ◽  
Benjamin Kerr ◽  
Charles Ofria
Keyword(s):  


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Adolfo da Silva-Melo ◽  
Edilberto Giannotti

Four colonies of the antPachycondyla striatawere used to analyze the specie behavioral repertoire. Forty-six behavioral acts were recorded in laboratory. Here, we present the record the division of labor between the castes and the temporal polyethism of monomorphic workers. The queens carried out many of the behavioral traits recorded in this work however; they performed them less frequently compared to the worker. The workers activity involved chasing and feeding on fresh insects and usingthem to nourish larvae besides laying eggs in the C-posture, an activity also performed by queens, which is similar to that of wasps of the subfamilyStenogastrinae. The young workers were involved in activities of brood care, sexuate care, and nest maintenance, and the older workers were involved in defense, exploration, and foraging.



Sign in / Sign up

Export Citation Format

Share Document