algal biotechnology
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 24)

H-INDEX

12
(FIVE YEARS 3)

2022 ◽  
pp. 213-239
Author(s):  
Bobby Edwards ◽  
Rajneesh Jaswal ◽  
Ashish Pathak ◽  
Ashvini Chauhan

2021 ◽  
pp. 173-206
Author(s):  
Sara B. Pereira
Keyword(s):  

2021 ◽  
Vol 173 (2) ◽  
pp. 479-482
Author(s):  
Christiane Funk ◽  
Poul Erik Jensen ◽  
Jorunn Skjermo

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1806
Author(s):  
Vilém Zachleder ◽  
Veronika Kselíková ◽  
Ivan N. Ivanov ◽  
Vitali Bialevich ◽  
Milada Vítová ◽  
...  

Green algae are fast-growing microorganisms that are considered promising for the production of starch and neutral lipids, and the chlorococcal green alga Parachlorella kessleri is a favorable model, as it can produce both starch and neutral lipids. P. kessleri commonly divides into more than two daughter cells by a specific mechanism—multiple fission. Here, we used synchronized cultures of the alga to study the effects of supra-optimal temperature. Synchronized cultures were grown at optimal (30 °C) and supra-optimal (40 °C) temperatures and incident light intensities of 110 and 500 μmol photons m−2 s−1. The time course of cell reproduction (DNA replication, cellular division), growth (total RNA, protein, cell dry matter, cell size), and synthesis of energy reserves (net starch, neutral lipid) was studied. At 40 °C, cell reproduction was arrested, but growth and accumulation of energy reserves continued; this led to the production of giant cells enriched in protein, starch, and neutral lipids. Furthermore, we examined whether the increased temperature could alleviate the effects of deuterated water on Parachlorella kessleri growth and division; results show that supra-optimal temperature can be used in algal biotechnology for the production of protein, (deuterated) starch, and neutral lipids.


2021 ◽  
Vol 5 ◽  
Author(s):  
V. Venugopal

The seafood industry generates large volumes of waste. These include processing discards consisting of shell, head, bones intestine, fin, skin, voluminous amounts of wastewater discharged as effluents, and low-value under-utilized fish, which are caught as by-catch of commercial fishing operations. The discards, effluents, and by-catch are rich in nutrients including proteins, amino acids, lipids containing good proportions of polyunsaturated fatty acids (PUFA), carotenoids, and minerals. The seafood waste is, therefore, responsible for loss of nutrients and serious environmental hazards. It is important that the waste is subjected to secondary processing and valorization to address the problems. Although chemical processes are available for waste treatment, most of these processes have inherent weaknesses. Biological treatments, however, are environmentally friendly, safe, and cost-effective. Biological treatments are based on bioconversion processes, which help with the recovery of valuable ingredients from by-catch, processing discards, and effluents, without losing their inherent bioactivities. Major bioconversion processes make use of microbial fermentations or actions of exogenously added enzymes on the waste components. Recent developments in algal biotechnology offer novel processes for biotransformation of nutrients as single cell proteins, which can be used as feedstock for the recovery of valuable ingredients and also biofuel. Bioconversion options in conjunction with a bio-refinery approach have potential for eco-friendly and economical management of seafood waste that can support sustainable seafood production.


2021 ◽  
pp. e00644
Author(s):  
Polina Dementyeva ◽  
Robert A. Freudenberg ◽  
Thomas Baier ◽  
Kristin Rojek ◽  
Lutz Wobbe ◽  
...  

2021 ◽  
pp. 102335
Author(s):  
Narasinga Rao Hanumanth Rao ◽  
Bojan Tamburic ◽  
Yen Thi Thai Doan ◽  
Bach Duc Nguyen ◽  
Rita Kay Henderson
Keyword(s):  

Author(s):  
Irina Sizova ◽  
Simon Kelterborn ◽  
Valeriy Verbenko ◽  
Suneel Kateriya ◽  
Peter Hegemann

Abstract The use of CRISPR/Cas endonucleases has revolutionized gene editing techniques for research on Chlamydomonas reinhardtii. To better utilize the CRISPR/Cas system, it is essential to develop a more comprehensive understanding of the DNA repair pathways involved in genome editing. In this study, we have analyzed contributions from canonical KU80/KU70-dependent non-homologous end-joining and polymerase theta (POLQ)-mediated end-joining on SpCas9-mediated untemplated mutagenesis and homology-directed repair/gene inactivation in Chlamydomonas. Using CRISPR/SpCas9 technology, we generated DNA repair-defective mutants ku80, ku70, polQ for gene targeting experiments. Our results show that untemplated repair of SpCas9-induced double strand breaks results in mutation spectra consistent with an involvement of both KU80/KU70 and POLQ. In addition, the inactivation of POLQ was found to negatively affect homology-directed repair of the inactivated paromomycin resistant mut-aphVIII gene when donor single-stranded oligos were used. Nevertheless, mut-aphVIII was still repaired by homologous recombination in these mutants. POLQ inactivation suppressed random integration of transgenes co-transformed with the donor ssDNA. KU80 deficiency did not affect these events but instead was surprisingly found to stimulate homology-directed repair/gene inactivation. Our data suggests that in Chlamydomonas, POLQ is the main contributor to CRISPR/Cas-induced homology-directed repair and random integration of transgenes, while KU80/KU70 potentially plays a secondary role. We expect our results will lead to improvement of genome editing in Chlamydomonas reinhardtii and can be used for future development of algal biotechnology.


2021 ◽  
Vol 9 (Spl-1- GCSGD_2020) ◽  
pp. S43-S48
Author(s):  
Manishaa Sri Mahendran ◽  
◽  
Sinouvassane Djearamane ◽  
Ling Shing Wong ◽  
Govindaraju Kasivelu ◽  
...  

The recent outbreak of Corona Virus Disease (COVID-19) and the surge in accelerating the development of a vaccine to fight against the SARS-CoV-2 virus has imposed greater challenges to humanity worldwide. There is lack of research into the production of effective vaccines and methods of treatment against viral infections. As of now, strategies encompassing antiviral drugs and corticosteroids alongside mechanical respiratory treatment are in practice as frontline treatments. Though studies have reported that microalgae possess antiviral properties, only a few cases have presented the existence of antiviral compounds such as algal polysaccharides, lectins, aggluttinins, scytovirin, algal lipids such as sulfoquinovosyldiacylglycerol (SQDG), monogalactosyldiacylglycerides (MGDG) and digalactosyldiacylglycerides (DGDG), and algal biopigments especially chlorophyll analogues, marennine, phycobiliproteins, phycocyanin, phycoerythrin and allophycocyanin that are derived from marine and freshwater microalgae. Given the chemodiversity of bioactive compounds from microalgae and the present scenario, algal biotechnology is seen as a prospective source of antiviral and anti-inflammatory compounds that can be used to develop antiviral agents. Microalgae with potential as antivirals and microalgae derived functional compounds to treat viral diseases are summarized and can be used as a reference in developing algae-derived antivirals to treat SARS-CoV-2 and other similar viruses.


Sign in / Sign up

Export Citation Format

Share Document