parachlorella kessleri
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 42)

H-INDEX

12
(FIVE YEARS 6)

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3613
Author(s):  
Li Ji ◽  
Qili Ge ◽  
Yuan Li ◽  
Yifan Gao ◽  
Shulian Xie

Microalgae have shown great potential in wastewater treatment. This study evaluates the growth and nutrient removal characteristics of five different microalgae strains, namely Chlorella vulgaris, Tetradesmus obliquus, Parachlorella kessleri, Hydrodictyon sp., and Scenedesmus quadricauda, in simulated domestic wastewater. The five microalgae could adapt to wastewater, but the growth potential and nitrogen removal capacity were species dependent. The nutrient removal effect of the microalgae used in this experiment was about 50% in the first two days. Parachlorella kessleri, selected from the five strains of green algae, shows good potential in removing nutrients from simulated domestic wastewater. For the simulated domestic sewage treated with Parachlorella kessleri, the chemical oxygen demand was almost completely reduced, and ammonium-N (NH4-N) and total nitrogen (TN) removal exceeded 70% at the end of the 10-day treatment. Total phosphorus (TP) removal was slightly worse, more than 65%. Parachlorella kessleri showed the best growth in sewage with the highest biomass reaching 366.67 mg L−1 and the highest specific growth rate reaching 0.538 d−1. This study can provide a reference for selecting suitable microalgae species to treat actual domestic sewage.


2021 ◽  
Vol 60 ◽  
pp. 102507
Author(s):  
C.A. Gómez-Pérez ◽  
Jairo Espinosa ◽  
Luis Carlos Montenegro-Ruiz

2021 ◽  
Vol 9 ◽  
Author(s):  
Wasif Farooq ◽  
Imtiaz Ali ◽  
Salman Raza Naqvi ◽  
Mohd Sajid ◽  
Hassnain Abbas Khan ◽  
...  

This study investigates the efficacy of a prepared Ni/θ-Al2O3 catalyst during the pyrolytic conversion of Parachlorella kessleri HY-6 and compares the results with non-catalytic conversion. The catalyst was characterized by techniques such as Brunauer–Emmett–Teller (BET) for surface area, acidity, and X-ray powder diffraction (XRD). Isoconversional and combined kinetic methods were used to study the pyrolytic kinetics of the process. Ni/θ-Al2O3 was used at 10, 20, and 30% of the algal biomass. The addition of Ni/θ-Al2O3 facilitated the conversion by lowering the mean activation energy during pyrolysis. The catalytic effect was more pronounced at lower and higher conversions. The presence of the catalyst facilitated the pyrolysis as indicated by the lower value of activation energy and ∆H, and ∆G. Gases evolved during pyrolysis were qualitatively analyzed by FTIR to see the effect of catalyst on evolved gas composition during the pyrolysis process.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3066
Author(s):  
Yifan Gao ◽  
Li Ji ◽  
Jia Feng ◽  
Junping Lv ◽  
Shulian Xie

The combustion explosion of ordinary diesel is a global environmental problem. Green microalgae, which do not cause eutrophication, are a raw material that can be used to clean biodiesel. To increase lipid productivity, this study used a nitrogen deficient & mixotrophic (+Glucose) culture of lipid-producing microalgae Parachlorella kessleri TY from Shanxi Province, China. To examine the growth of P. kessleri TY, we measured dry weight, chlorophyll content, and chlorophyll fluorescence intensity under different culture conditions, in addition to the contents of neutral lipids, total lipids, and fatty acids, to examine its lipid accumulation ability. Cells were cultured in autotrophic, nitrogen deficient, mixotrophic (+Glucose), and nitrogen deficient & mixotrophic (+Glucose) conditions for 7 days. We found the growth of P. kessleri TY under nitrogen deficient & mixotrophic conditions was higher than that under the autotrophic and nitrogen deficient conditions, but lower than that under the mixotrophic (+Glucose) conditions. However, its lipid accumulation ability was significantly higher than that of control cultures. In conclusion, P. kessleri TY cultured under nitrogen-deficient and mixotrophic (+Glucose) conditions has significant lipid production capacity. Our results provide a theoretical basis for the use of microalgae as a raw material in the production of biodiesel, and promote the application of P. kessleri TY in large-scale production.


2021 ◽  
Vol 59 ◽  
pp. 102463
Author(s):  
Meruert O. Bauenova ◽  
Assemgul K. Sadvakasova ◽  
Zhuldyz O. Mustapayeva ◽  
Mikołaj Kokociński ◽  
Bolatkhan K. Zayadan ◽  
...  

Author(s):  
Eliana M Jiménez‐Bambague ◽  
Juan S Florez‐Castillo ◽  
Rosa D Gómez‐Angulo ◽  
Paola A Morales‐Acosta ◽  
Enrique J Peña‐Salamanca ◽  
...  

2021 ◽  
Author(s):  
Jaspreet S Saini ◽  
Christel Hassler ◽  
Rachel Cable ◽  
Marion Fourquez ◽  
Francesco Danza ◽  
...  

AbstractMeromictic Lake Cadagno, an ancient ocean analogue, is known for its permanent stratification and persistent anoxygenic microbial bloom within the chemocline. Although the anaerobic microbial ecology of the lake has been extensively studied for at least 25 years, a comprehensive picture of the microbial food web linking the bacterial layer to phytoplankton and viruses, with explicit measures of primary and secondary production, is still missing. This study sought to understand better the abundances and productivity of microbes in the context of nutrient biogeochemical cycling across the stratified zones of Lake Cadagno. Photosynthetic pigments and chloroplast 16S rRNA gene phylogenies suggested the presence of eukaryotic phytoplankton through the water column. Evidence supported high abundances of Ankyra judayi, a high-alpine adapted chlorophyte, in the oxic mixolimnion where oxygenic-primary production peaked. Through the low- and no-oxygen chemocline and monimolimnion, chlorophytes related to Closteriopsis acicularis, a known genus of meromictic lakes, and Parachlorella kessleri were observed. Chromatium, anoxygenic phototrophic sulfur bacteria, dominated the chemocline along with Lentimicrobium, a genus of known fermenters whose abundance was newly reported in Lake Cadagno. Secondary production peaked in the chemocline suggesting primary producers depend on heterotrophs for nutrient remineralization. As previously observed, sulfur-reducing bacteria (SRBs), especially Desulfocapsa and Desulfobulbus, were present in the chemocline and anoxic monimolimnion. Virus-to-microbe ratios (VMR) peaked in the zone of phytoplankton yet were at a minimum at the peak of Chromatium. These dynamic trends suggest viruses may play a role in the modulation of oxygenic and anoxygenic photo- and chemosynthesis in Lake Cadagno and other permanently stratified systems.ImportanceAs a window to the past, the study offers insights into the role of microbial guilds of Proterozoic ocean chemoclines in the production and recycling of organic matter of sulfur- and ammonia-containing ancient oceans. The new observations described here suggest that eukaryotic algae were persistent in the low oxygen upper-chemocline in association with purple and green sulfur bacteria in the lower half of the chemocline. Further, this study provides the first insights into Lake Cadagno viral ecology. High viral abundances suggested viruses may be essential components of the chemocline where their activity may result in the release and recycling of organic matter. The framework developed in this study through the integration of diverse geochemical and biological data types lays the foundation for future studies to quantitatively resolve the processes performed by discrete populations comprising the microbial loop in this early anoxic ocean analogue.


2021 ◽  
Vol 50 ◽  
pp. 101581
Author(s):  
Jean-Baptiste Beigbeder ◽  
Malo Sanglier ◽  
Julia Maria de Medeiros Dantas ◽  
Jean-Michel Lavoie

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1806
Author(s):  
Vilém Zachleder ◽  
Veronika Kselíková ◽  
Ivan N. Ivanov ◽  
Vitali Bialevich ◽  
Milada Vítová ◽  
...  

Green algae are fast-growing microorganisms that are considered promising for the production of starch and neutral lipids, and the chlorococcal green alga Parachlorella kessleri is a favorable model, as it can produce both starch and neutral lipids. P. kessleri commonly divides into more than two daughter cells by a specific mechanism—multiple fission. Here, we used synchronized cultures of the alga to study the effects of supra-optimal temperature. Synchronized cultures were grown at optimal (30 °C) and supra-optimal (40 °C) temperatures and incident light intensities of 110 and 500 μmol photons m−2 s−1. The time course of cell reproduction (DNA replication, cellular division), growth (total RNA, protein, cell dry matter, cell size), and synthesis of energy reserves (net starch, neutral lipid) was studied. At 40 °C, cell reproduction was arrested, but growth and accumulation of energy reserves continued; this led to the production of giant cells enriched in protein, starch, and neutral lipids. Furthermore, we examined whether the increased temperature could alleviate the effects of deuterated water on Parachlorella kessleri growth and division; results show that supra-optimal temperature can be used in algal biotechnology for the production of protein, (deuterated) starch, and neutral lipids.


Sign in / Sign up

Export Citation Format

Share Document