radiative relaxation
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 37)

H-INDEX

24
(FIVE YEARS 1)

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 23
Author(s):  
Karolina Maleckaitė ◽  
Domantas Narkevičius ◽  
Rugilė Žilėnaitė ◽  
Jelena Dodonova-Vaitkūnienė ◽  
Stepas Toliautas ◽  
...  

Mapping microviscosity, temperature, and polarity in biosystems is an important capability that can aid in disease detection. This can be achieved using fluorescent sensors based on a green-emitting BODIPY group. However, red fluorescent sensors are desired for convenient imaging of biological samples. It is known that phenyl substituents in the β position of the BODIPY core can shift the fluorescence spectra to longer wavelengths. In this research, we report how electron-withdrawing (EWG) and -donating (EDG) groups can change the spectral and sensory properties of β-phenyl-substituted BODIPYs. We present a trifluoromethyl-substituted (EWG) conjugate with moderate temperature sensing properties and a methoxy-substituted (EDG) molecule that could be used as a lifetime-based polarity probe. In this study, we utilise experimental results of steady-state and time-resolved fluorescence, as well as quantum chemical calculations using density functional theory (DFT). We also explain how the energy barrier height (Ea) for non-radiative relaxation affects the probe’s sensitivity to temperature and viscosity and provide appropriate Ea ranges for the best possible sensitivity to viscosity and temperature.


2021 ◽  
Vol 5 (4) ◽  
pp. 218-228
Author(s):  
L. N. Myasnikova ◽  
A. G. Maratova ◽  
K. Sh. Shunkeyev

This paper studies deformation-stimulated features of radiative relaxation of self-trapped excitons and recombination assembly of exciton-like luminescence in RbI crystal. Methods of research were luminescence and thermal activation spectroscopy. The identity of the mechanism of manifestation of the X-ray luminescence, tunnel luminescence and thermally stimulated luminescence spectra were found in the elastically deformed RbI crystal, interpreted by the luminescence of self-trapped exciton, tunnel recharge of F′, VK -pairs and thermally stimulated recombination of e−, VK -centres, respectively.The temperatures of the maximum destruction peaks of thermally stimulated luminescence, their spectral composition and activation energies were determined experimentally, on the basis of which the mechanisms of recombination assembly of exciton-like luminescences in a RbI crystal were interpreted. Uniaxial elastic deformation leads to the effective formation of point radiation defects ( F′, HA, VK -centers) in comparison with an unbroken lattice, where the predominant mechanism is the association of interstitial atoms ( H -centres) with the formation of I3−-centres.


Author(s):  
Malsha Udayakantha ◽  
S. Sameera Perera ◽  
Rachel D. Davidson ◽  
Lucia Zuin ◽  
Federico A. Rabuffetti ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
D. W. Boukhvalov ◽  
I. S. Zhidkov ◽  
A. Kiryakov ◽  
J. L. Menéndez ◽  
L. Fernández-García ◽  
...  

AbstractWe report results of comprehensive experimental exploration (X-ray photoemission, Raman and optical spectroscopy) of carbon nanofibers (CNFs) in combination with first-principles modeling. Core-level spectra demonstrate prevalence of sp2 hybridization of carbon atoms in CNF with a trace amount of carbon–oxygen bonds. The density functional theory (DFT)-based calculations demonstrated no visible difference between mono- and bilayers because σ-orbitals are related to in-plane covalent bonds. The influence of the distortions on π-peak is found to be significant only for bilayers as a result of π–π interlayer bonds formation. These results are supported by both experimental Raman and XPS valence band spectra. The combination of optical measurements with a theoretical modeling indicates the formation of optically active graphene quantum dots (GQDs) in the CNF matrix, with a radiative relaxation of the excited π* state. The calculated electronic structure of these GQDs is in quantitative agreement with the measured optical transitions and provides an explanation of the absence of visible contribution from these GQDs to the measured valence bands spectra.


2021 ◽  
Vol 61 (3) ◽  
Author(s):  
K. Shunkeyev ◽  
Zh. Ubaev ◽  
A. Lushchik ◽  
L. Myasnikova

The processes of radiation defect creation and radiative relaxation of electronic excitations under applied local or/and uniaxial elastic deformation have been studied in NaCl crystals by means of optical absorption, luminescence and thermoactivation spectroscopy methods. In NaCl:Li at 80 K, X-ray-induced absorption bands peaked around 3.35 and 4.6 eV have been detected and ascribed to interstitial halide atoms located nearby Li impurity cations, HA(Li) centres. Subsequent thermal annealing of HA(Li) centres leads to the formation of polyhalide centres responsible for the absorption band at 5.35 eV. In an X-irradiated and stressed NaCl:Li crystal (degree of uniaxial elastic deformation of ε = 0.9%), the peak of thermally stimulated luminescence at ~115 K is composed of the ~2.7-eV emission appearing, in our opinion, due to the recombination of the electron, thermally released from an F′ centre, with a hole-type HA(Li) centre. The applied uniaxial elastic stress facilitates the self-trapping of anion excitons in regular regions of a NaCl lattice and impedes the energy transfer by mobile excitons to impurities/defects and, in turn, attenuates the Br-related luminescence peaked at 3.95 eV with respect to the π-emission of self-trapped excitons (~3.35 eV). The 3.95 eV emission has been detected in a natural NaCl crystal containing homologous Br impurity ions.


2021 ◽  
Author(s):  
Benjamin Ecclestone ◽  
Kevan Bell ◽  
Sarah Sparkes ◽  
Deepak Dinakaran ◽  
John Mackey ◽  
...  

Abstract In the past decades, absorption modalities have emerged as powerful tools for label-free functional and structural imaging of cells and tissues. Many biomolecules present unique absorption spectra providing chromophore-specific information on properties such as chemical bonding, and sample composition. As chromophores absorb photons the absorbed energy is emitted as photons (radiative relaxation) or converted to heat and under specific conditions pressure (non-radiative relaxation). Modalities like fluorescence microscopy may capture radiative relaxation to provide contrast, while modalities like photoacoustic microscopy may leverage non-radiative heat and pressures. Here we show an all-optical non-contact total-absorption photoacoustic remote sensing (TA-PARS) microscope, which can capture both radiative and non-radiative absorption effects in a single acquisition. The TA-PARS yields an absorption metric proposed as the quantum efficiency ratio (QER), which visualizes a biomolecules proportional radiative and non-radiative absorption response. The TA-PARS provides label-free visualization of a range of biomolecules enabling convincing analogues to traditional histochemical staining of tissues, effectively providing label-free Hematoxylin and Eosin (H&E)-like visualizations. These findings represent the establishment of an effective all-optical non-contact total-absorption microscope for label-free inspection of biological media.


Sign in / Sign up

Export Citation Format

Share Document