illuminant estimation
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 17)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (29) ◽  
pp. 111-117
Author(s):  
Peter Morovič ◽  
Ján Morovič

It is well known that color formation acts as a noise-reducing lossy compression mechanism that results in ambiguity, known as metamerism. Surfaces that match under one set of conditions-an illuminant and observer or capture device-can mismatch under others. The phenomenon has been studied extensively in the past, leading to important results like metamer mismatch volumes, color correction, reflectance estimation and the computation of metamer sets-sets of all possible reflectances that could result in a given sensor response. However, most of these approaches have three limitations: first, they simplify the problem and make assumptions about what reflectances can look like (i.e., being smooth, natural, residing in a subspace based on some measured data), second, they deal with strict mathematical metamerism and overlook noise or precision, and third, only isolated responses are considered without taking the context of a response into account. In this paper we address these limitations by outlining an approach that allows for the robust computation of approximate unconstrained metamer sets and exact unconstrained paramer sets. The notion of spatial or relational paramer sets that take neighboring responses into account, and applications to illuminant estimation and color constancy are also briefly discussed.


2021 ◽  
Vol 11 (21) ◽  
pp. 9936
Author(s):  
Yunhui Luo ◽  
Xingguang Wang ◽  
Qing Wang ◽  
Yehong Chen

Computational color constancy (CCC) is a fundamental prerequisite for many computer vision tasks. The key of CCC is to estimate illuminant color so that the image of a scene under varying illumination can be normalized to an image under the canonical illumination. As a type of solution, combination algorithms generally try to reach better illuminant estimation by weighting other unitary algorithms for a given image. However, due to the diversity of image features, applying the same weighting combination strategy to different images might result in unsound illuminant estimation. To address this problem, this study provides an effective option. A two-step strategy is first employed to cluster the training images, then for each cluster, ANFIS (adaptive neuro-network fuzzy inference system) models are effectively trained to map image features to illuminant color. While giving a test image, the fuzzy weights measuring what degrees the image belonging to each cluster are calculated, thus a reliable illuminant estimation will be obtained by weighting all ANFIS predictions. The proposed method allows illuminant estimation to be dynamic combinations of initial illumination estimates from some unitary algorithms, relying on the powerful learning and reasoning capabilities of ANFIS. Extensive experiments on typical benchmark datasets demonstrate the effectiveness of the proposed approach. In addition, although there is an initial observation that some learning-based methods outperform even the most carefully designed and tested combinations of statistical and fuzzy inference systems, the proposed method is good practice for illuminant estimation considering fuzzy inference eases to implement in imaging signal processors with if-then rules and low computation efforts.


2021 ◽  
Vol 2021 (1) ◽  
pp. 68-72
Author(s):  
Ghalia Hemrit ◽  
Joseph Meehan

The aim of colour constancy is to discount the effect of the scene illumination from the image colours and restore the colours of the objects as captured under a ‘white’ illuminant. For the majority of colour constancy methods, the first step is to estimate the scene illuminant colour. Generally, it is assumed that the illumination is uniform in the scene. However, real world scenes have multiple illuminants, like sunlight and spot lights all together in one scene. We present in this paper a simple yet very effective framework using a deep CNN-based method to estimate and use multiple illuminants for colour constancy. Our approach works well in both the multi and single illuminant cases. The output of the CNN method is a region-wise estimate map of the scene which is smoothed and divided out from the image to perform colour constancy. The method that we propose outperforms other recent and state of the art methods and has promising visual results.


2021 ◽  
Author(s):  
Donik Vrsnak ◽  
Ilija Domislovic ◽  
Marko Subasic ◽  
Sven Loncaric

Author(s):  
Marco Buzzelli ◽  
Riccardo Riva ◽  
Simone Bianco ◽  
Raimondo Schettini

Sign in / Sign up

Export Citation Format

Share Document