Failure Behavior of Laser Metal Deposited Additive Manufacturing Ti-6Al-4V: Effects of Stress State and Initial Defects

Author(s):  
Chang Peng ◽  
Peng-Hui Li ◽  
Wei-Guo Guo ◽  
Rui-Feng Wang ◽  
Yan-Ping Li
Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3657
Author(s):  
Alexander E. Wilson-Heid ◽  
Erik T. Furton ◽  
Allison M. Beese

This study investigates the disparate impact of internal pores on the fracture behavior of two metal alloys fabricated via laser powder bed fusion (L-PBF) additive manufacturing (AM)—316L stainless steel and Ti-6Al-4V. Data from mechanical tests over a range of stress states for dense samples and those with intentionally introduced penny-shaped pores of various diameters were used to contrast the combined impact of pore size and stress state on the fracture behavior of these two materials. The fracture data were used to calibrate and compare multiple fracture models (Mohr-Coulomb, Hosford-Coulomb, and maximum stress criteria), with results compared in equivalent stress (versus stress triaxiality and Lode angle) space, as well as in their conversions to equivalent strain space. For L-PBF 316L, the strain-based fracture models captured the stress state dependent failure behavior up to the largest pore size studied (2400 µm diameter, 16% cross-sectional area of gauge region), while for L-PBF Ti-6Al-4V, the stress-based fracture models better captured the change in failure behavior with pore size up to the largest pore size studied. This difference can be attributed to the relatively high ductility of 316L stainless steel, for which all samples underwent significant plastic deformation prior to failure, contrasted with the relatively low ductility of Ti-6Al-4V, for which, with increasing pore size, the displacement to failure was dominated by elastic deformation.


Author(s):  
N. Knofius ◽  
M. C. van der Heijden ◽  
A. Sleptchenko ◽  
W. H. M. Zijm

Abstract The low-volume spare parts business is often identified as a potential beneficiary of additive manufacturing (AM) technologies. Currently, high AM unit costs or low AM part reliabilities deem the application of AM economical inferior to conventional manufacturing (CM) methods in most cases. In this paper, we investigate the potential to overcome these deficiencies by combining AM and CM methods. For that purpose, we develop an approach that is tailored toward the unique characteristics of dual sourcing with two production methods. Opposed to the traditional dual sourcing literature, we consider the different failure behavior of parts produced by AM and CM methods. Using numerical experiments and a case study in the aviation industry, we explore under which conditions dual sourcing with AM performs best. Single sourcing with AM methods typically leads to higher purchasing and maintenance costs while single sourcing with CM methods increases backorder and holding costs. Savings of more than 30% compared to the best single sourcing option are possible even if the reliability or unit costs of a part sourced with AM are three times worse than for a CM part. In conclusion, dual sourcing methods may play an important role to exploit the benefits of AM methods while avoiding its drawbacks in the low-volume spare parts business.


Author(s):  
Michael Brünig ◽  
Marco Schmidt ◽  
Steffen Gerke

Abstract The paper deals with a numerical model to investigate the influence of stress state on damage and failure in the ductile steel X5CrNi18-10. The numerical analysis is based on an anisotropic continuum damage model taking into account yield and damage criteria as well as evolution equations for plastic and damage strain rate tensors. Results of numerical simulations of biaxial experiments with the X0- and the H-specimen presented. In the experiments, formation of strain fields are monitored by digital image correlation which can be compared with numerically predicted ones to validate the numerical model. Based on the numerical analysis the strain and stress quantities in selected parts of the specimens are predicted. Analysis of damage strain variables enables prediction of fracture lines observed in the tests. Stress measures are used to explain different stress-state-dependent damage and failure mechanisms on the micro-level visualized on fracture surfaces by scanning electron microscopy.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1740 ◽  
Author(s):  
Sebastian Marian Zaharia ◽  
Larisa Anamaria Enescu ◽  
Mihai Alin Pop

Material Extrusion-Based Additive Manufacturing Process (ME-AMP) via Fused Filament Fabrication (FFF) offers a higher geometric flexibility than conventional technologies to fabricate thermoplastic lightweight sandwich structures. This study used polylactic acid/polyhydroxyalkanoate (PLA/PHA) biodegradable material and a 3D printer to manufacture lightweight sandwich structures with honeycomb, diamond-celled and corrugated core shapes as a single part. In this paper, compression, three-point bending and tensile tests were performed to evaluate the performance of lightweight sandwich structures with different core topologies. In addition, the main failure modes of the sandwich structures subjected to mechanical tests were evaluated. The main failure modes that were observed from mechanical tests of the sandwich structure were the following: face yielding, face wrinkling, core/skin debonding. Elasto-plastic finite element analysis allowed predicting the global behavior of the structure and stressing distribution in the elements of lightweight sandwich structures. The comparison between the results of bending experiments and finite element analyses indicated acceptable similarity in terms of failure behavior and force reactions. Finally, the three honeycomb, diamond-celled and corrugated core typologies were used in the leading edge of the wing and were impact tested and the results created favorable premises for using such structures on aircraft models and helicopter blade structures.


2019 ◽  
Vol 137 ◽  
pp. 103102 ◽  
Author(s):  
Shengxin Zhu ◽  
Yazhou Guo ◽  
Haosen Chen ◽  
Yulong Li ◽  
Daining Fang

Sign in / Sign up

Export Citation Format

Share Document