alumina crucible
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 9)

H-INDEX

6
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7740
Author(s):  
Adamantia Lazou ◽  
Leiv Kolbeinsen ◽  
Jafar Safarian

This work evaluates the characteristics of calcium aluminate slag and pig iron samples obtained from the smelting of calcined and reduced diasporic bauxite ore. The study is conducted in the Pedersen process framework, which is a method to produce alumina from low-grade resources. Parameters such as the effect of crucible type, lime addition, and atmospheric conditions are studied considering the characteristics of the product pig irons and calcium aluminate slags for further uses. The behavior of the bauxite and distribution of the species between slag and metal was assessed based on the applied analytical techniques and thermodynamic calculations. Iron was reduced and separated from the slags in the presence of carbon (graphite crucible) for both the reduced and calcined bauxite. Si and Ti were mainly concentrated in the slags. Iron was separated from the slag in the absence of carbon (alumina crucible) for the H2-reduced bauxite. The results show that slags with increased lime additions are composed mainly of 5CaO.Al2O3 and CaO.Al2O3, that are considered highly leachable compounds. An optimum CaO/Al2O3 mass ratio of 1.12 was suggested. The presence of O2 and/or OH- in the furnace atmosphere will result in the formation of 12CaO.7Al2O3.


Author(s):  
Yong Li ◽  
Yuxian Wu ◽  
Ziwei Wen ◽  
Yajing Cui ◽  
Yong Zhao ◽  
...  

2021 ◽  
Vol 406 ◽  
pp. 441-447
Author(s):  
K. Abdellaoui

Through this research we have prepared samples of glass, which includes 60 mol%B2O3 – x mol %barite – (40-x) mol %Li2O, where x= 5, 7.5, 10, and 15 mol%. The samples fabricated by the melt quenching technique. The samples are melted in alumina crucible at 1473 K for 1.5 h in an electric muffle furnace (LENTON). The glasses were casted into stainless molds, and then immediately transferred to an annealing furnance at about 400°C. The aim of this work is to determine the extent of the effect of raw barite on the physical and optical properties of this glass. The optical transmittance and reflectance spectrum of the glasses in this work were determined in the wavelength range 300–2500 nm at room temperature. The physical and optical properties of the following prepared glass samples have been determined and calculated (density, volume molar, refraction index, Optical dielectric constant, molar refractivity and electronic polarizability) for glasses prepared.


2020 ◽  
Vol 51 (6) ◽  
pp. 2689-2710
Author(s):  
Fabian Imanasa Azof ◽  
Kai Tang ◽  
Jinglin You ◽  
Jafar Safarian

AbstractSynthesis of crystalline slags of 12CaO·7Al2O3 phase from the corresponding melt compositions in different atmospheric conditions and different purities is investigated. Observations using a thermogravimetry coupled with differential thermal analysis showed that the dehydration of a zeolitic 12CaO·7Al2O3 phase occur at 770 °C to 1390 °C before it congruently melts at 1450 °C. The X-ray diffraction pattern of the slag showed that a single 12CaO·7Al2O3 phase is produced from a mixture, which has small SiO2 impurity with a 49:51 mass ratio of CaO to Al2O3. A scanning electron microscope and electron probe micro-analyzer showed that a minor Ca-Al-Si-O-containing phase is in equilibrium with a grain-less 12CaO·7Al2O3 phase. Moreover, 12CaO·7Al2O3 is unstable at room temperature when the high-purity molten slag is solidified under oxidizing conditions contained in an alumina crucible. On the other hand, a high-temperature in-situ Raman spectroscopy of a slag that was made of a higher purity CaO-Al2O3 mixture showed that 5CaO·3Al2O3 phase is an unstable/intermediate phase in the the CaO-Al2O3 system, which is decomposed to 12CaO·7Al2O3 above 1100 °C upon heating in oxidizing conditions. It was found that 5CaO·3Al2O3 is present at room temperature when the 12CaO·7Al2O3 dissociates to a mixture of 5CaO·3Al2O3, 3CaO·Al2O3, and CaO·Al2O3 phases during the cooling of the slag at 1180 °C ± 20 °C in reducing atmosphere. It is proposed that low concentrations of Si stabilize 12CaO·7Al2O3 (mayenite), in which Si is a solid solution in its lattice, which is named Si-mayenite. Regarding the calculated CaO-Al2O3-SiO2 diagram in this study, this phase may contain a maximum of 4.7 wt pct SiO2, which depends on the total SiO2 in the system and the Ca/Al ratio.


Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 275 ◽  
Author(s):  
Hongpo Wang ◽  
Peng Yu ◽  
Silu Jiang ◽  
Bin Bai ◽  
Lifeng Sun ◽  
...  

In order to determine strategies for removing arsenic from rare earth arsenic-containing steels, the evolution of inclusions in the whole steelmaking process with alumina crucibles was investigated. It has been proven that adding lanthanum has a significant effect on both the existing state and content of arsenic in steel. The content of arsenic steeply decreased after adding 0.148% lanthanum by generating La–S–As inclusions. The addition of 0.054% lanthanum did not dramatically affect the content of arsenic. Both 0.148% and 0.054% additions of lanthanum modified the existing Si–Mn–Al–O inclusions, making them first change to La-containing inclusions, and then change back to Si–Mn–Al–O inclusions. During this process, the compositions of inclusions changed from (SiO2–MnO)-rich to Al2O3-rich ones, owing to the reactions between lanthanum and alumina crucibles. The addition of 0.148% lanthanum resulted in a relatively severe reaction with the alumina crucible. This led to the decomposition of a part of the existing La–S–As inclusions and a slight increase in the arsenic content. Therefore, it is noted that choosing an appropriate holding time after adding rare earth elements to molten steel has a significant effect on the arsenic removal and saving the consumption of rare earth elements.


2019 ◽  
Vol 56 (2) ◽  
pp. 771-779 ◽  
Author(s):  
Watcharee Sornlar ◽  
Pattarawan Choeycharoen ◽  
Anucha Wannagon

2019 ◽  
Vol 211 ◽  
pp. 679-686
Author(s):  
Manjulata Sahu ◽  
Aishwarya S. Kar ◽  
Ankita Rao ◽  
S.K. Shiny ◽  
Ritu Singh ◽  
...  

2017 ◽  
Vol 314 (3) ◽  
pp. 1667-1674 ◽  
Author(s):  
Aishwarya S. Kar ◽  
Ankita Rao ◽  
Manjulata Sahu ◽  
Shiny S. Kumar ◽  
B. S. Tomar
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document