scholarly journals Synthesis and Characterization of 12CaO·7Al2O3 Slags: The Effects of Impurities and Atmospheres on the Phase Relations

2020 ◽  
Vol 51 (6) ◽  
pp. 2689-2710
Author(s):  
Fabian Imanasa Azof ◽  
Kai Tang ◽  
Jinglin You ◽  
Jafar Safarian

AbstractSynthesis of crystalline slags of 12CaO·7Al2O3 phase from the corresponding melt compositions in different atmospheric conditions and different purities is investigated. Observations using a thermogravimetry coupled with differential thermal analysis showed that the dehydration of a zeolitic 12CaO·7Al2O3 phase occur at 770 °C to 1390 °C before it congruently melts at 1450 °C. The X-ray diffraction pattern of the slag showed that a single 12CaO·7Al2O3 phase is produced from a mixture, which has small SiO2 impurity with a 49:51 mass ratio of CaO to Al2O3. A scanning electron microscope and electron probe micro-analyzer showed that a minor Ca-Al-Si-O-containing phase is in equilibrium with a grain-less 12CaO·7Al2O3 phase. Moreover, 12CaO·7Al2O3 is unstable at room temperature when the high-purity molten slag is solidified under oxidizing conditions contained in an alumina crucible. On the other hand, a high-temperature in-situ Raman spectroscopy of a slag that was made of a higher purity CaO-Al2O3 mixture showed that 5CaO·3Al2O3 phase is an unstable/intermediate phase in the the CaO-Al2O3 system, which is decomposed to 12CaO·7Al2O3 above 1100 °C upon heating in oxidizing conditions. It was found that 5CaO·3Al2O3 is present at room temperature when the 12CaO·7Al2O3 dissociates to a mixture of 5CaO·3Al2O3, 3CaO·Al2O3, and CaO·Al2O3 phases during the cooling of the slag at 1180 °C ± 20 °C in reducing atmosphere. It is proposed that low concentrations of Si stabilize 12CaO·7Al2O3 (mayenite), in which Si is a solid solution in its lattice, which is named Si-mayenite. Regarding the calculated CaO-Al2O3-SiO2 diagram in this study, this phase may contain a maximum of 4.7 wt pct SiO2, which depends on the total SiO2 in the system and the Ca/Al ratio.

2015 ◽  
Vol 93 (6) ◽  
pp. 594-601 ◽  
Author(s):  
Arek Keuchguerian ◽  
Berline Mougang-Soume ◽  
Frank Schaper ◽  
Davit Zargarian

This report presents the results of a study on the preparation of iron alkoxide complexes chelated by diiminopyridine ligands and their role in the room temperature polymerization of rac-lactide. Reaction of N,N′-(p-R-C6H4CH2)2-diiminopyridines (R = H (1), F (2)) with FeX2 (X = Cl, Br) yielded the homoleptic complexes [(1)2Fe][FeX4] or [(2)2Fe][FeX4], respectively. Treating the latter with Na[BPh4] afforded the anion exchange product [(2)2Fe][BPh4]2, which was characterized by 1H NMR and absorption spectroscopy, combustion analysis, and single crystal X-ray diffraction. Various attempts to grow crystals of [(1)2Fe][FeX4] and [(2)2Fe][FeX4] culminated in the isolation of single crystals of [(2)2Fe][Cl6Fe2O] that was characterized by X-ray diffraction. Attempted synthesis of well-defined, mononuclear alkoxide derivatives from [(1)2Fe]2+ or [(2)2Fe]2+ gave mostly intractable products, but in one case we obtained the crystallographically characterized sodium iron cluster Na4Fe2(OC6H4F)8(THF)2. An aryloxide derivative proved accessible by reaction of NaOC6H4F with the mono-ligand precursor LFeCl2 (L = N,N′-dimesityl-diiminopyridine), but characterization of LFe(OC6H4F)2 was limited to a single crystal X-ray diffraction analysis, owing to unsuccessful attempts at isolating pure samples. The difficulties encountered in the isolation of pure alkoxide derivatives prompted us to use in-situ generated LFe(OEt)2 for studying the polymerization of rac-lactide. This system was found to be moderately active at room temperature and with a slight preference for the formation of a heterotactic polymer (Pr = 0.54–0.65). Large polydispersities of 1.5–2.0 indicated the presence of transesterification side-reactions, which were confirmed by the presence of peaks with m/z = n 144 + M(EtOH) + M(Na+) and m/z = (n + 0.5) 144 + M(EtOH) + M(Na+) in MALDI-MS.


2019 ◽  
Vol 73 (9) ◽  
pp. 1074-1086
Author(s):  
Valentina Aguilar-Melo ◽  
Alejandro Mitrani ◽  
Edgar Casanova-Gonzalez ◽  
Mayra D. Manrique-Ortega ◽  
Griselda Pérez-Ireta ◽  
...  

A burial and a rich offering were found under Room 2 in the Murals Building, Bonampak, a Mayan archaeological site situated in Chiapas, Mexico. This burial may be related with the creation of the famous mural paintings. A rich set of jewelry made of green stones was among the different objects found. Green stones have great importance in Mesoamerican cultures, those composed of jadeite being the most appreciated. To characterize the green stones, different spectroscopic techniques were used in a complementary way: Raman and infrared spectroscopies (FT-IR) were used for global mineralogical analysis, while X-ray diffraction (XRD) and X-ray fluorescence (XRF) were applied simultaneously in situ on the artifacts that were not successfully identified by these molecular techniques. In addition, XRF was used to contrasts the elemental information from pieces composed of pyroxenes that may be related to the raw sources of jade in Guatemala. The main minerals identified within the beads and earrings were jadeite with omphacite and jadeite with albite; to a minor extent, quartz, and serpentine. In this paper, the main features of the molecular and X-ray techniques are compared in order to determine the advantages and limitations of these spectroscopies for mineral identification. With this combination of techniques, it was possible to undertake a suitable characterization of the analyzed objects. This paper focuses on the XRD–XRF combined analysis for in situ noninvasive characterization.


1990 ◽  
Vol 5 (5) ◽  
pp. 989-997 ◽  
Author(s):  
P. Bai ◽  
G-R. Yang ◽  
L. You ◽  
T-M. Lu ◽  
D.B. Knorr

The epitaxial growth of Cu on Si(111) substrate at room temperature was achieved using the Partially Ionized Beam (PIB) deposition technique in a conventional (10−4 Pa) vacuum without prior in situ cleaning of the substrate or post-annealing of the film. The beam contained ≍2% of Cu self-ions, and a bias of 0 to 4.2 kV was applied to the substrate during deposition. X-ray diffraction studies showed the existence of a twin structure in the epitaxial Cu layer deposited at 1 kV. A mechanism of epitaxial growth of Cu(111) on Si(111) substrate via an η″—Cu3Si intermediate phase is proposed. Based on the crystal structure of η″—Cu3Si, it is demonstrated that the geometrical lattice matching concept provides a simple picture of lattice continuity at the interface in this epitaxial system.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


2012 ◽  
Vol 512-515 ◽  
pp. 1511-1515
Author(s):  
Chun Lin Zhao ◽  
Li Xing ◽  
Xiao Hong Liang ◽  
Jun Hui Xiang ◽  
Fu Shi Zhang ◽  
...  

Cadmium sulfide (CdS) nanocrystals (NCs) were self-assembled and in-situ immobilized on the dithiocarbamate (DTCs)-functionalized polyethylene glycol terephthalate (PET) substrates between the organic (carbon disulfide diffused in n-hexane) –aqueous (ethylenediamine and Cd2+ dissolved in water) interface at room temperature. Powder X-ray diffraction measurement revealed the hexagonal structure of CdS nanocrystals. Morphological studies performed by scanning electron microscopy (SEM) and high-resolution transmission electron microscope (HRTEM) showed the island-like structure of CdS nanocrystals on PET substrates, as well as energy-dispersive X-ray spectroscopy (EDS) confirmed the stoichiometries of CdS nanocrystals. The optical properties of DTCs modified CdS nanocrystals were thoroughly investigated by ultraviolet-visible absorption spectroscopy (UV-vis) and fluorescence spectroscopy. The as-prepared DTCs present intrinsic hydrophobicity and strong affinity for CdS nanocrystals.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3502
Author(s):  
Fangzhou Song ◽  
Masayoshi Uematsu ◽  
Takeshi Yabutsuka ◽  
Takeshi Yao ◽  
Shigeomi Takai

LATP-based composite electrolytes were prepared by sintering the mixtures of LATP precursor and La2O3 nano-powder. Powder X-ray diffraction and scanning electron microscopy suggest that La2O3 can react with LATP during sintering to form fine LaPO4 particles that are dispersed in the LATP matrix. The room temperature conductivity initially increases with La2O3 nano-powder addition showing the maximum of 0.69 mS∙cm−1 at 6 wt.%, above which, conductivity decreases with the introduction of La2O3. The activation energy of conductivity is not largely varied with the La2O3 content, suggesting that the conduction mechanism is essentially preserved despite LaPO4 dispersion. In comparison with the previously reported LATP-LLTO system, although some unidentified impurity slightly reduces the conductivity maximum, the fine dispersion of LaPO4 particles can be achieved in the LATP–La2O3 system.


2000 ◽  
Vol 5 (S1) ◽  
pp. 412-424
Author(s):  
Jung Han ◽  
Jeffrey J. Figiel ◽  
Gary A. Petersen ◽  
Samuel M. Myers ◽  
Mary H. Crawford ◽  
...  

We report the growth and characterization of quaternary AlGaInN. A combination of photoluminescence (PL), high-resolution x-ray diffraction (XRD), and Rutherford backscattering spectrometry (RBS) characterizations enables us to explore the contours of constant- PL peak energy and lattice parameter as functions of the quaternary compositions. The observation of room temperature PL emission at 351nm (with 20% Al and 5% In) renders initial evidence that the quaternary could be used to provide confinement for GaInN (and possibly GaN). AlGaInN/GaInN MQW heterostructures have been grown; both XRD and PL measurements suggest the possibility of incorporating this quaternary into optoelectronic devices.


2016 ◽  
Vol 850 ◽  
pp. 191-196 ◽  
Author(s):  
Wei Wang ◽  
Cun Lei Zou ◽  
Ren Geng Li ◽  
Wen Wen ◽  
Hui Jun Kang ◽  
...  

In situ synchrotron X-ray diffraction was used to study a deformed Cu-0.88 Fe-0.24 P alloy during heating process. The measurements were performed at room temperature and also at high temperatures up to 893 K in order to determine the recovery, ageing and recrystallization process. With the increase of temperature, the angles of copper matrix peaks moved left and the FWHM (full width at half maximum) decreased slightly. Fe3P precipitates were first detected at 533 K, reached the maximum at 673 K, and re-dissolved into matrix at 853 K. A dramatic decrease in FWHM was observed accompanied by the precipitation of Fe3P phases, indicating the reduction of lattice distortion of copper matrix.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3920
Author(s):  
Martin Weber ◽  
Gábor Balázs ◽  
Alexander V. Virovets ◽  
Eugenia Peresypkina ◽  
Manfred Scheer

By reacting [{Cp‴Fe(CO)2}2(µ,η1:1-P4)] (1) with in situ generated phosphenium ions [Ph2P][A] ([A]− = [OTf]− = [O3SCF3]−, [PF6]−), a mixture of two main products of the composition [{Cp‴Fe(CO)2}2(µ,η1:1-P5(C6H5)2)][PF6] (2a and 3a) could be identified by extensive 31P NMR spectroscopic studies at 193 K. Compound 3a was also characterized by X-ray diffraction analysis, showing the rarely observed bicyclo[2.1.0]pentaphosphapentane unit. At room temperature, the novel compound [{Cp‴Fe}(µ,η4:1-P5Ph2){Cp‴(CO)2Fe}][PF6] (4) is formed by decarbonylation. Reacting 1 with in situ generated diphenyl arsenium ions gives short-lived intermediates at 193 K which disproportionate at room temperature into tetraphenyldiarsine and [{Cp‴Fe(CO)2}4(µ4,η1:1:1:1-P8)][OTf]2 (5) containing a tetracyclo[3.3.0.02,7.03,6]octaphosphaoctane ligand.


Inorganics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 28
Author(s):  
Kriti Pathak ◽  
Chandan Nandi ◽  
Jean-François Halet ◽  
Sundargopal Ghosh

Synthesis, isolation, and structural characterization of unique metal rich diamagnetic cobaltaborane clusters are reported. They were obtained from reactions of monoborane as well as modified borohydride reagents with cobalt sources. For example, the reaction of [Cp*CoCl]2 with [LiBH4·THF] and subsequent photolysis with excess [BH3·THF] (THF = tetrahydrofuran) at room temperature afforded the 11-vertex tricobaltaborane nido-[(Cp*Co)3B8H10] (1, Cp* = η5-C5Me5). The reaction of Li[BH2S3] with the dicobaltaoctaborane(12) [(Cp*Co)2B6H10] yielded the 10-vertex nido-2,4-[(Cp*Co)2B8H12] cluster (2), extending the library of dicobaltadecaborane(14) analogues. Although cluster 1 adopts a classical 11-vertex-nido-geometry with one cobalt center and four boron atoms forming the open pentagonal face, it disobeys the Polyhedral Skeletal Electron Pair Theory (PSEPT). Compound 2 adopts a perfectly symmetrical 10-vertex-nido framework with a plane of symmetry bisecting the basal boron plane resulting in two {CoB3} units bridged at the base by two boron atoms and possesses the expected electron count. Both compounds were characterized in solution by multinuclear NMR and IR spectroscopies and by mass spectrometry. Single-crystal X-ray diffraction analyses confirmed the structures of the compounds. Additionally, density functional theory (DFT) calculations were performed in order to study and interpret the nature of bonding and electronic structures of these complexes.


Sign in / Sign up

Export Citation Format

Share Document