lode parameter
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 12)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Author(s):  
navab hosseini ◽  
J. C. Nieto-Fuentes ◽  
MANJUNATH DAKSHINAMURTHY ◽  
Jose Rodriguez-Martinez ◽  
GUADALUPE VADILLO

In this work, we have brought to light the effect of material orientation on void growth. For that purpose, we have performed finite element calculations using a cubic unit-cell model with a spherical void at its center and subjected to periodic boundary conditions. The behavior of the material is described with an elastic isotropic, plastic orthotropic constitutive model with yielding defined by Yld2004-18p criterion (Barlat et al., 2005). We have used the multi-point constraint subroutine developed by Dakshinamurthy et al. (2021) to enforce constant values of macroscopic stress triaxiality and Lode parameter in calculations that have been carried out for different stress states resulting from the combination of T=0.33, 1 and 2, with L=-1, 0 and 1 (axisymmetric tension, generalized shear and axisymmetric compression, respectively). Firstly, we have performed numerical simulations in which the loading directions are collinear with the orthotropy axes of the material, so that the principal directions of macroscopic stress and strain are parallel. Investigation of the cases for which the minor loading axis coincides either with the rolling, the transverse or the normal direction, has shown that the initially spherical void turns into an ellipsoid whose rate of growth and eccentricity depend on both stress state and material orientation. A key result is that for specific material orientations the anisotropy switches the effect of Lode parameter on void growth, reversing the trends obtained for isotropic von Mises materials. Secondly, we have carried out calculations using a novel strategy which consists of including angular misalignments within the range 0<\theta<90, so that one loading direction is parallel to one of the symmetry axes of the material, and \theta is the angle formed between the other two loading directions and the second and third orthotropy axes. In fact, to the authors’ knowledge, these are the first unit-cell calculations ever reported in which the material is modeled using a macroscopic anisotropic yield function with prescribed misalignment between loading and material axes and, at the same time, the macroscopic stress triaxiality and the Lode parameter are controlled to be constant during loading. The finite element calculations have shown that the misalignment between loading and material axes makes the void and the faces of the unit-cell to rotate and twist during loading. Moreover, the main contribution of this work is the identification of an intermediate value of the angle for which the growth rate of the void reaches an extreme value (minimum or maximum), so that the numerical results indicate that material orientation and angular misalignment can be strategically exploited to control void growth, and thus promote or delay localization and fracture of anisotropic metal products. The conclusions of this research have been shown to be valid for three different materials (aluminum alloys 2090-T3, 6111-T4 and 6013) and selected comparisons have also been performed using two additional yield criteria (CPB06ex2 and Yld2011-27p).


2021 ◽  
Vol 245 ◽  
pp. 112869
Author(s):  
Xuewei Huang ◽  
Chenchen Wei ◽  
Jun Zhao ◽  
Wei Zhao ◽  
Jianzhou Ge

2021 ◽  
pp. 105678952110364
Author(s):  
Miguel Ruiz de Sotto ◽  
Véronique Doquet ◽  
Patrice Longère ◽  
Jessica Papasidero

An extensive experimental campaign was run to investigate the influence of the loading direction, stress state (triaxiality ratio ranging from −0.5 to 1), and strain rate (from 10−3 to 1.5x103s−1) on the ductile fracture of Ti-6Al-4V titanium alloy. Microscopic and macroscopic observations provided some insight into the shear-driven or micro-voiding-controlled damage mechanisms prevailing at low and high triaxiality ratios, respectively. Numerical simulations were run to determine the local loading paths to fracture in terms of plastic strain as a function of stress triaxiality ratio and Lode parameter. The ductility was found to be anisotropic, but only weakly dependent on the strain rate in the considered range. The anisotropy in ductility was different in tension (maximum along DD) and in compression (maximum along ND). The fracture strain decreased with the absolute value of the triaxiality, with a maximum close to zero. No clear correlation with the Lode parameter was found.


2021 ◽  
Author(s):  
N. Baghous ◽  
I. Barsoum

Abstract The objective of this study is to investigate the effect of the Lode parameter on different material strengths. Recent work has shown that ductile failure highly depends on the stress state characterized by both the stress triaxiality T and the Lode parameter L, which is related to the third deviatoric stress invariant. Thus, for six different steel grades, two different specimen geometries were manufactured to account for two different Lode parameters (L = −1 and L = 0), whereas T is controlled by introducing different sized notches at the center of the specimens. By performing tensile experiments and running finite element simulations, the ductile failure loci of the six materials showed variations between the two specimen geometries, indicating that the failure highly depends on the stress state characterized by both T and L. This indicates the need to reassess the ductile local failure criterion in the ASME codes that only accounts for T as a stress state measure. A Lode sensitivity parameter LS is defined based on the experimental results and revealed that the steel grades with ultimate strength higher than a certain threshold value (450 MPa) exhibit sensitivity to the Lode parameter, and the results showed that the LS increases with increase in the ultimate strength of the steel grade. The results were incorporated to enhance the original ASME local failure criterion by accounting for T, L, and LS to accurately assess ductile failure in high-strength steels.


2020 ◽  
Author(s):  
GUADALUPE VADILLO

Void growth and morphology evolution in fcc bi-crystals are investigated using crystal plasticity fi?nite element method. For that purpose, representative volume element of bi-crystals with a void at the grain boundary are considered in the analysis. Grain boundary is assumed initially perpendicular/coaxial with the straight sides of the cell. Fully periodic boundary conditions are prescribed in the representative volume element and macroscopic stress triaxiality and Lode parameter are kept constant during the whole deformation process. Three di?erent pairs of crystal orientations characterized as hard-hard, soft-soft and soft-hard has been employed for modellingthe mechanical response of the bi-crystal. Simulations are performed to study the implications of triaxiality, Lode parameter and crystallographic orientation on slip mechanism, hardening and hence void evolution. The impact of void presence and its growth on the heterogeneity of lattice rotation and resulting grain fragmentation in neighbouring areas is also analysed and discussed.


Sign in / Sign up

Export Citation Format

Share Document