scholarly journals The effect of material orientation on void growth

2021 ◽  
Author(s):  
navab hosseini ◽  
J. C. Nieto-Fuentes ◽  
MANJUNATH DAKSHINAMURTHY ◽  
Jose Rodriguez-Martinez ◽  
GUADALUPE VADILLO

In this work, we have brought to light the effect of material orientation on void growth. For that purpose, we have performed finite element calculations using a cubic unit-cell model with a spherical void at its center and subjected to periodic boundary conditions. The behavior of the material is described with an elastic isotropic, plastic orthotropic constitutive model with yielding defined by Yld2004-18p criterion (Barlat et al., 2005). We have used the multi-point constraint subroutine developed by Dakshinamurthy et al. (2021) to enforce constant values of macroscopic stress triaxiality and Lode parameter in calculations that have been carried out for different stress states resulting from the combination of T=0.33, 1 and 2, with L=-1, 0 and 1 (axisymmetric tension, generalized shear and axisymmetric compression, respectively). Firstly, we have performed numerical simulations in which the loading directions are collinear with the orthotropy axes of the material, so that the principal directions of macroscopic stress and strain are parallel. Investigation of the cases for which the minor loading axis coincides either with the rolling, the transverse or the normal direction, has shown that the initially spherical void turns into an ellipsoid whose rate of growth and eccentricity depend on both stress state and material orientation. A key result is that for specific material orientations the anisotropy switches the effect of Lode parameter on void growth, reversing the trends obtained for isotropic von Mises materials. Secondly, we have carried out calculations using a novel strategy which consists of including angular misalignments within the range 0<\theta<90, so that one loading direction is parallel to one of the symmetry axes of the material, and \theta is the angle formed between the other two loading directions and the second and third orthotropy axes. In fact, to the authors’ knowledge, these are the first unit-cell calculations ever reported in which the material is modeled using a macroscopic anisotropic yield function with prescribed misalignment between loading and material axes and, at the same time, the macroscopic stress triaxiality and the Lode parameter are controlled to be constant during loading. The finite element calculations have shown that the misalignment between loading and material axes makes the void and the faces of the unit-cell to rotate and twist during loading. Moreover, the main contribution of this work is the identification of an intermediate value of the angle for which the growth rate of the void reaches an extreme value (minimum or maximum), so that the numerical results indicate that material orientation and angular misalignment can be strategically exploited to control void growth, and thus promote or delay localization and fracture of anisotropic metal products. The conclusions of this research have been shown to be valid for three different materials (aluminum alloys 2090-T3, 6111-T4 and 6013) and selected comparisons have also been performed using two additional yield criteria (CPB06ex2 and Yld2011-27p).

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 271
Author(s):  
Jun-Jun Zhai ◽  
Xiang-Xia Kong ◽  
Lu-Chen Wang

A homogenization-based five-step multi-scale finite element (FsMsFE) simulation framework is developed to describe the time-temperature-dependent viscoelastic behavior of 3D braided four-directional composites. The current analysis was performed via three-scale finite element models, the fiber/matrix (microscopic) representative unit cell (RUC) model, the yarn/matrix (mesoscopic) representative unit cell model, and the macroscopic solid model with homogeneous property. Coupling the time-temperature equivalence principle, multi-phase finite element approach, Laplace transformation and Prony series fitting technology, the character of the stress relaxation behaviors at three scales subject to variation in temperature is investigated, and the equivalent time-dependent thermal expansion coefficients (TTEC), the equivalent time-dependent thermal relaxation modulus (TTRM) under micro-scale and meso-scale were predicted. Furthermore, the impacts of temperature, structural parameters and relaxation time on the time-dependent thermo-viscoelastic properties of 3D braided four-directional composites were studied.


2020 ◽  
Author(s):  
GUADALUPE VADILLO

Void growth and morphology evolution in fcc bi-crystals are investigated using crystal plasticity fi?nite element method. For that purpose, representative volume element of bi-crystals with a void at the grain boundary are considered in the analysis. Grain boundary is assumed initially perpendicular/coaxial with the straight sides of the cell. Fully periodic boundary conditions are prescribed in the representative volume element and macroscopic stress triaxiality and Lode parameter are kept constant during the whole deformation process. Three di?erent pairs of crystal orientations characterized as hard-hard, soft-soft and soft-hard has been employed for modellingthe mechanical response of the bi-crystal. Simulations are performed to study the implications of triaxiality, Lode parameter and crystallographic orientation on slip mechanism, hardening and hence void evolution. The impact of void presence and its growth on the heterogeneity of lattice rotation and resulting grain fragmentation in neighbouring areas is also analysed and discussed.


2007 ◽  
Vol 345-346 ◽  
pp. 681-684 ◽  
Author(s):  
Imad Barsoum ◽  
Jonas Faleskog

A micromechanics model based on the theoretical framework of plastic localization into a band introduced by Rice [1] is developed. The model employed consists of a planar band with a square array of equally sized cells, with a spherical void located in the centre of each cell. The micromechanics model is applied to analyze the rupture mechanisms associated with mixed mode ductile fracture. The stress state is characterized by the stress triaxiality T and the Lode parameter μ, which adequately describe the stress state ahead of a crack tip under mixed mode loading of an isotropic elasto-plastic material. The main focus is the influence of μ on void growth and coalescence behavior. It is shown that the Lode parameter exerts a strong influence upon this behavior.


1995 ◽  
Vol 61 (591) ◽  
pp. 2435-2441
Author(s):  
Tomoyuki Sasaki ◽  
Moriaki Goya ◽  
Kiyohiro Miyagi ◽  
Shousuke Itomura ◽  
Toshiyasu Sueyoshi

2020 ◽  
Author(s):  
Javier Reboul ◽  
Ankit Srivastava ◽  
shmuel osovski ◽  
GUADALUPE VADILLO

The onset of macroscopic strain localization limits the ductility of many ductile materials. For porous ductile materials, two distinct mechanisms of macroscopic localization have been identified: void growth induced softening and void coalescence. In this work we focus on analyzing the influence of material's strain rate sensitivity (SRS) on the two mechanisms of macroscopic localization or ductile failure as a function of the imposed stress triaxiality. To this end, three dimensional finite element calculations of unit cells have been carried out to model void growth and coalescence in an infinite block containing a periodic distribution of initially spherical voids in a band. The matrix material of the unit cell is considered to follow a strain rate dependent elastic perfectly plastic flow response. The unit cell calculations are carried out for a range of SRS parameter, imposed stress triaxiality and initial orientations of the voided band. Our results show that both the critical porosity and strain at the onset of localization and coalescence are strongly influenced by the SRS parameter and the imposed stress triaxiality values. Furthermore, the relative effect of the SRS parameter is found to increases with the increasing value of the imposed stress triaxiality.


2019 ◽  
Vol 86 (9) ◽  
Author(s):  
Padmeya P. Indurkar ◽  
Shailendra P. Joshi

Abstract This paper presents an analysis of void growth and coalescence in isotropic, elastoplastic materials exhibiting sigmoidal hardening using unit cell calculations and micromechanics-based damage modeling. Axisymmetric finite element unit cell calculations are carried out under tensile loading with constant nominal stress triaxiality conditions. These calculations reveal the characteristic role of material hardening in the evolution of the effective response of the porous solid. The local heterogeneous flow hardening around the void plays an important role, which manifests in the stress–strain response, porosity evolution, void aspect ratio evolution, and the coalescence characteristics that are qualitatively different from those of a conventional power-law hardening porous solid. A homogenization-based damage model based on the micromechanics of void growth and coalescence is presented with two simple, heuristic modifications that account for this effect. The model is calibrated to a small number of unit cell results with initially spherical voids, and its efficacy is demonstrated for a range of porosity fractions, hardening characteristics, and void aspect ratios.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 5453-5458 ◽  
Author(s):  
WEIDONG SONG ◽  
JIANGUO NING ◽  
HAIYAN LIU

The fracture behaviors of tungsten alloys 91 W -6.3 Ni -2.7 Fe were investigated by tensile tests and numerical simulations. Firstly, tensile tests were conducted on the S-570 SEM with an in-situ tensile stage. With this system, the process of deformation, damage and evolution in micro-area can be tracked and recorded, and at the same time, the load-strain curve can be drawn. Secondly, the 2D finite element model of a unit cell for the tungsten alloys was established by using finite element program. By copying the unit cell model, the macro-model of the alloys was given. Dozen of cases were performed to simulate the fracture behaviors of tungsten alloys. Thirdly, the random model of the alloys was established. The fracture patterns of the alloys were investigated by the model. The interface between the tungsten particle and the matrix was explored in details. The effect of interface strength on the fracture patterns of the alloys was taken into account. A good agreement was achieved between the experimental results and the numerical predictions.


Sign in / Sign up

Export Citation Format

Share Document