infection structure
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 2)

H-INDEX

17
(FIVE YEARS 0)

2022 ◽  
Vol 23 (2) ◽  
pp. 881
Author(s):  
Chengyu Liu ◽  
Ningning Shen ◽  
Qian Zhang ◽  
Minghui Qin ◽  
Tingyan Cao ◽  
...  

The devastating fungus Magnaporthe oryzae (M. oryzae) forms a specialized infection structure known as appressorium, which generates enormous turgor, to penetrate the plant cells. However, how M. oryzae regulates the appressorium turgor formation, is not well understood. In this study, we identified MoBZIP3, a bZIP transcription factor that functioned in pathogenesis in M. oryzae. We found that the pathogenicity of the MoBZIP3 knockout strain (Δmobzip3) was significantly reduced, and the defect was restored after re-expression of MoBZIP3, indicating that MoBZIP3 is required for M. oryzae virulence. Further analysis showed that MoBZIP3 functions in utilization of glycogen and lipid droplets for generation of glycerol in appressorium. MoBZIP3 localized in the nucleus and could bind directly to the promoters of the glycerol synthesis-related genes, MoPTH2, MoTGL1 and MoPEX6, and regulate their expression which is critical for glycerol synthesis in the appressorium turgor pressure generation. Furthermore, the critical turgor sensor gene MoSln1 was also down regulated and its subcellular localization was aberrant in Δmobzip3, which leads to a disordered actin assembly in the Δmobzip3 appressorium. Taken together, these results revealed new regulatory functions of the bZIP transcription factor MoBZIP3, in regulating M. oryzae appressorium turgor formation and infection.


2018 ◽  
Vol 19 (7) ◽  
pp. 2142 ◽  
Author(s):  
Yaqin Yan ◽  
Qinfeng Yuan ◽  
Jintian Tang ◽  
Junbin Huang ◽  
Tom Hsiang ◽  
...  

Colletotrichum higginsianum is a hemibiotrophic ascomycetous fungus that causes economically important anthracnose diseases on numerous monocot and dicot crops worldwide. As a model pathosystem, the Colletotrichum–Arabidopsis interaction has the significant advantage that both organisms can be manipulated genetically. The goal of this review is to provide an overview of the system and to point out recent significant studies that update our understanding of the pathogenesis of C. higginsianum and resistance mechanisms of Arabidopsis against this hemibiotrophic fungus. The genome sequence of C. higginsianum has provided insights into how genome structure and pathogen genetic variability has been shaped by transposable elements, and allows systematic approaches to longstanding areas of investigation, including infection structure differentiation and fungal–plant interactions. The Arabidopsis-Colletotrichum pathosystem provides an integrated system, with extensive information on the host plant and availability of genomes for both partners, to illustrate many of the important concepts governing fungal–plant interactions, and to serve as an excellent starting point for broad perspectives into issues in plant pathology.


2017 ◽  
Vol 19 (5) ◽  
pp. 1730-1749 ◽  
Author(s):  
Hui-Qiang Feng ◽  
Gui-Hua Li ◽  
Shun-Wen Du ◽  
Song Yang ◽  
Xue-Qian Li ◽  
...  

2013 ◽  
Vol 26 (6) ◽  
pp. 695-708 ◽  
Author(s):  
Emad Albarouki ◽  
Holger B. Deising

Ferroxidases are essential components of the high-affinity reductive iron assimilation pathway in fungi. Two ferroxidase genes, FET3-1 and FET3-2, have been identified in the genome of the maize anthracnose fungus Colletotrichum graminicola. Complementation of growth defects of the ferroxidase-deficient Saccharomyces cerevisiae strain Δfet3fet4 showed that both Fet3-1 and Fet3-2 of C. graminicola represent functional ferroxidases. Expression of enhanced green fluorescent protein fusions in yeast and C. graminicola indicated that both ferroxidase proteins localize to the plasma membrane. Transcript abundance of FET3-1 increased dramatically under iron-limiting conditions but those of FET3-2 were hardly detectable. Δfet3-1 and Δfet3-2 single as well as Δfet3-1/2 double-deletion strains were generated. Under iron-sufficient or deficient conditions, vegetative growth rates of these strains did not significantly differ from that of the wild type but Δfet3-1 and Δfet3-1/2 strains showed increased sensitivity to reactive oxygen species. Furthermore, under iron-limiting conditions, appressoria of Δfet3-1 and Δfet3-1/2 strains showed significantly reduced transcript abundance of a class V chitin synthase and exhibited severe cell wall defects. Infection assays on intact and wounded maize leaves, quantitative data of infection structure differentiation, and infection stage-specific expression of FET3-1 showed that reductive iron assimilation is required for appressorial penetration, biotrophic development, and full virulence.


2009 ◽  
Vol 10 (3) ◽  
pp. 1662-1678 ◽  
Author(s):  
Abdelaziz Kacha ◽  
My Hassan Hbid ◽  
Rafael Bravo de la Parra

Sign in / Sign up

Export Citation Format

Share Document