colletotrichum higginsianum
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 27)

H-INDEX

18
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Brian D Rutter ◽  
Thi-Thu-Huyen Chu ◽  
Kamil K Zajt ◽  
Jean-Felix Dallery ◽  
Richard J O'Connell ◽  
...  

Fungal phytopathogens secrete extracellular vesicles (EVs) associated with enzymes and phytotoxic metabolites. While these vesicles are thought to promote infection, defining the true contents and functions of fungal EVs, as well as suitable protein markers, is an ongoing process. To expand our understanding of fungal EVs and their possible roles during infection, we purified EVs from the hemibiotrophic phytopathogen Colletotrichum higginsianum, the causative agent of anthracnose disease in multiple plant species, including Arabidopsis thaliana. EVs were purified in large numbers from the supernatant of protoplasts but not the supernatant of intact mycelial cultures. We purified two separate populations of EVs, each associated with over 700 detected proteins, including proteins involved in vesicle transport, cell wall biogenesis and the synthesis of secondary metabolites. We selected two SNARE proteins (Snc1 and Sso2) and one 14-3-3 protein (Bmh1) as potential EV markers and generated transgenic lines expressing fluorescent fusions. Each marker was confirmed to be protected inside EVs. Fluorescence microscopy was used to examine the localization of each marker during infection on Arabidopsis leaves. These findings further our understanding of EVs in fungal phytopathogens and will help build an experimental system to study EV inter-kingdom communication between plants and fungi.


2021 ◽  
Vol 87 (6) ◽  
pp. 344-353
Author(s):  
Hiroyuki Takahara ◽  
Sho Yamaguchi ◽  
Natsuki Omura ◽  
Shota Nakajima ◽  
Kasumi Otoku ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Dandan Cui ◽  
Jin Yang ◽  
Bosi Lu ◽  
Hong Shen

Chitosanase plays a vital role in bioactive chitooligosaccharide preparation. Here, we characterized and prepared a potential GH46 family chitosanase from Bacillus atrophaeus BSS. The purified recombinant enzyme Csn-SH showed a molecular weight of 27.0 kDa. Csn-SH displayed maximal activity toward chitosan at pH 5.0 and 45°C. Thin-layer chromatography and electrospray ionization–mass spectrometry indicated that Csn-SH mainly hydrolyzed chitosan into (GlcN)2, (GlcN)3, and (GlcN)4 with an endo-type cleavage pattern. Molecular docking analysis demonstrated that Csn-SH cleaved the glycoside bonds between subsites −2 and + 1 of (GlcN)6. Importantly, the chitosan hydrolysis rate of Csn-SH reached 80.57% within 40 min, which could reduce time and water consumption. The hydrolysates prepared with Csn-SH exhibited a good antifungal activity against Magnaporthe oryzae and Colletotrichum higginsianum. The above results suggested that Csn-SH could be used to produce active chitooligosaccharides efficiently that are biocontrol agents applicable for safe and sustainable agricultural production.


2021 ◽  
Vol 22 (11) ◽  
pp. 5963
Author(s):  
Qinfeng Yuan ◽  
Yaqin Yan ◽  
Muhammad Aamir Sohail ◽  
Hao Liu ◽  
Junbin Huang ◽  
...  

Colletotrichum higginsianum is an important hemibiotrophic plant pathogen that causes crucifer anthracnose worldwide. To date, some hexose transporters have been identified in fungi. However, the functions of hexose transporters in virulence are not clear in hemibiotrophic phytopathogens. In this study, we identified and characterized a new hexose transporter gene named ChHxt6 from a T-DNA insertion pathogenicity-deficient mutant G256 in C. higginsianum. Expression profiling analysis revealed that six ChHxt genes, ChHxt1 to ChHxt6, exhibited specific expression patterns in different infection phases of C. higginsianum. The ChHxt1 to ChHxt6 were separately deleted using the principle of homologous recombination. ChHxt1 to ChHxt6 deletion mutants grew normally on PDA plates, but only the virulence of ChHxt4 and ChHxt6 deletion mutants was reduced. ChHxt4 was required for fungal infection in both biotrophic and necrotrophic stages, while ChHxt6 was important for formation of necrotrophic hyphae during infection. In addition, ChHxts were functional in uptake of different hexoses, but only ChHxt6-expressing cells could grow on all five hexoses, indicating that the ChHxt6 was a central hexose transporter and crucial for hexose uptake. Site-directed mutation of T169S and P221L positions revealed that these two positions were necessary for hexose transport, whereas only the mutation Thr169 caused reduced virulence and defect in formation of necrotrophic hyphae. Taken together, ChHxt6 might regulate fungal virulence by modulating the utilization of hexose.


Author(s):  
Muhammad Aamir Sohail ◽  
Qinfeng Yuan ◽  
Yaqin Yan ◽  
Junbin Huang ◽  
Tom Hsiang ◽  
...  

2021 ◽  
Author(s):  
Hong Liu ◽  
Hui Wang ◽  
Xun Lu ◽  
Qian Zhou

Abstract In this study, a novel single-stranded RNA virus was isolated from the plant pathogenic fungus, Colletotrichum higginsianum strain HTC-5, named “Colletotrichum higginsianum ssRNA virus 1” (ChRV1). The complete genome of ChRV1 is 3850 bp in length with a GC content of 52 % and encodes two in-frame open reading frames (ORFs): ORF1 (smaller) and ORF2 (larger). ORF1 encodes a protein with highest similarity to proteins encoded by Phoma matteucciicola RNA virus 1 (PmRV1, 47.99% identity) and Periconia macrospinosa ambiguivirus 1 (PmAV1, 50.73% identity). ORF2 encodes a protein with a conserved RNA-dependent RNA polymerase (RdRp) domain with similarity to RdRps of PmRV1 (61.41% identity) and PmAV1 (60.61% identity), which are unclassified (+)ssRNA mycoviruses reported recently. Phylogenetic analysis of the RdRp domain suggested that ChRV1 grouped together with PmRV1, PmAV1 and other unclassified (+)ssRNA mycoviruses, and had a distant relationship to invertebrate viruses and plant viruses of the family Tombusviridae. This is the first report of a novel (+)ssRNA virus infecting the phytopathogenic fungus C. higginsianum.


2021 ◽  
Author(s):  
Yaqin Yan ◽  
Jintian Tang ◽  
Qinfeng Yuan ◽  
Liping Liu ◽  
Hao Liu ◽  
...  

Colletotrichum higginsianum is an important hemibiotrophic fungal pathogen that causes anthracnose disease on various cruciferous plants. Discovery of new virulence factors could lead to strategies for effectively controlling anthracnose. Acyl-CoA binding proteins (ACBPs) are mainly involved in binding and trafficking acyl-CoA esters in eukaryotic cells. However, the functions of this important class of proteins in plant fungal pathogens remain unclear. In this study, we performed an iTRAQ-based quantitative proteomic analysis to identify differentially expressed proteins (DEPs) between a nonpathogenic mutant ΔCh-MEL1 and the wild-type. Based on iTRAQ data, DEPs in the ΔCh-MEL1 mutant were mainly associated with melanin biosynthesis, carbohydrate and energy metabolism, lipid metabolism, redox processes, and amino acid metabolism. Proteomic analysis revealed that many DEPs might be involved in growth and pathogenesis of C. higginsianum. Among them, an acyl-CoA binding protein, ChAcb1, was selected for further functional studies. Deletion of ChAcb1 caused defects in vegetative growth and conidiation. ChAcb1 is also required for response to hyperosmotic and oxidative stresses, and maintenance of cell wall integrity. Importantly, the ΔChAcb1 mutant exhibited reduced virulence, and microscopic examination revealed that it was defective in appressorial penetration and infectious growth. Furthermore, the ΔChAcb1 mutant was impaired in fatty acid and lipid metabolism. Taken together, ChAcb1 was identified as a new virulence gene in this plant pathogenic fungus.


2021 ◽  
Author(s):  
Mina Ohtsu ◽  
Joanna Jennings ◽  
Matthew Johnston ◽  
Xiaokun Liu ◽  
Nathan Hughes ◽  
...  

SummaryMulticellular organisms exchange information and resources between cells to co-ordinate growth and responses. In plants, plasmodesmata establish cytoplasmic continuity between cells to allow for communication and resource exchange across the cell wall. Some plant pathogens use plasmodesmata as a pathway for both molecular and physical invasion. However, the benefits of molecular invasion (cell-to-cell movement of pathogen effectors) are poorly understood. To begin to investigate this and identify which effectors are cell-to-cell mobile, we performed a live imaging-based screen and identified 15 cell-to-cell mobile effectors of the fungal pathogen Colletotrichum higginsianum. Of these, 6 are “hypermobile”, showing cell-to-cell mobility greater than expected for a protein of its size. We further identified 3 effectors that can indirectly modify plasmodesmal aperture. Transcriptional profiling of plants expressing hypermobile effectors implicate them in a variety of processes including senescence, glucosinolate production, cell wall integrity, growth and iron metabolism. However, not all effectors had an independent effect on virulence. This suggests a wide range of benefits to infection gained by the mobility of C. higginsianum effectors that likely interact in a complex way during infection.


Sign in / Sign up

Export Citation Format

Share Document