ascomycetous fungus
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 6)

H-INDEX

12
(FIVE YEARS 2)

Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1391
Author(s):  
Virginia Kimani ◽  
René Ullrich ◽  
Enrico Büttner ◽  
Robert Herzog ◽  
Harald Kellner ◽  
...  

Background: Fungal DyP-type peroxidases have so far been described exclusively for basidiomycetes. Moreover, peroxidases from ascomycetes that oxidize Mn2+ ions are yet not known. Methods: We describe here the physicochemical, biocatalytic, and molecular characterization of a DyP-type peroxidase (DyP, EC 1.11.1.19) from an ascomycetous fungus. Results: The enzyme oxidizes classic peroxidase substrates such as 2,6-DMP but also veratryl alcohol and notably Mn2+ to Mn3+ ions, suggesting a physiological function of this DyP in lignin modification. The KM value (49 µM) indicates that Mn2+ ions bind with high affinity to the XgrDyP protein but their subsequent oxidation into reactive Mn3+ proceeds with moderate efficiency compared to MnPs and VPs. Mn2+ oxidation was most effective at an acidic pH (between 4.0 and 5.0) and a hypothetical surface exposed an Mn2+ binding site comprising three acidic amino acids (two aspartates and one glutamate) could be localized within the hypothetical XgrDyP structure. The oxidation of Mn2+ ions is seemingly supported by four aromatic amino acids that mediate an electron transfer from the surface to the heme center. Conclusions: Our findings shed new light on the possible involvement of DyP-type peroxidases in lignocellulose degradation, especially by fungi that lack prototypical ligninolytic class II peroxidases.


2020 ◽  
Vol 33 (4) ◽  
pp. 576-579 ◽  
Author(s):  
Zhi Li ◽  
Yanchun Fan ◽  
Pingping Chang ◽  
Linlin Gao ◽  
Xiping Wang

Elsinoë ampelina is an ascomycetous fungus that causes grape anthracnose, a potentially devastating disease worldwide. Here, we report a 28.29 Mb high-quality genome sequence of E. ampelina YL-1 that encodes 8,057 predicted protein-coding genes and represents the first sequenced genome assembly of E. ampelina. This study adds to the current genomic resources for the genus Elsinoë and paves the way for research on comparative genomic studies, E. ampelina–grape interactions, and improvement of management strategies.


2019 ◽  
Vol 11 (10) ◽  
pp. 2807-2817
Author(s):  
Olga A Kudryavtseva ◽  
Ksenia R Safina ◽  
Olga A Vakhrusheva ◽  
Maria D Logacheva ◽  
Aleksey A Penin ◽  
...  

Abstract Podospora anserina is a model ascomycetous fungus which shows pronounced phenotypic senescence when grown on solid medium but possesses unlimited lifespan under submerged cultivation. In order to study the genetic aspects of adaptation of P. anserina to submerged cultivation, we initiated a long-term evolution experiment. In the course of the first 4 years of the experiment, 125 single-nucleotide substitutions and 23 short indels were fixed in eight independently evolving populations. Six proteins that affect fungal growth and development evolved in more than one population; in particular, in the G-protein alpha subunit FadA, new alleles fixed in seven out of eight experimental populations, and these fixations affected just four amino acid sites, which is an unprecedented level of parallelism in experimental evolution. Parallel evolution at the level of genes and pathways, an excess of nonsense and missense substitutions, and an elevated conservation of proteins and their sites where the changes occurred suggest that many of the observed fixations were adaptive and driven by positive selection.


2019 ◽  
Vol 8 (17) ◽  
Author(s):  
Enrico Büttner ◽  
Christiane Liers ◽  
Anna Maria Gebauer ◽  
Jérôme Collemare ◽  
Jorge Carlos Navarro-Muñoz ◽  
...  

Chlorociboria aeruginascens DSM 107184 is a wood-decomposing ascomycetous fungus known to produce the bluish-green dimeric naphthoquinone derivate xylindein. Here, we present the first draft genome sequence, which contains 588 contigs with a total length of 33.1 Mb.


2019 ◽  
Author(s):  
Ning Liu ◽  
Shen Shen ◽  
Hui Jia ◽  
Beibei Yang ◽  
Xiaoyue Guo ◽  
...  

AbstractLaccases can catalyze monoelectronic oxidation and have shown to have an increasing value in industrial application. In this study, as identified by Native-PAGE and ESI-MS/MS, ascomycetous fungus Setosphaeria turcica produced three laccase isozymes: Stlac1, Stlac2, and Stlac6. Stlac2 was heterologously expressed in both eukaryotic and prokaryotic expression systems. The eukaryotic recombinant Stlac2 expressed in Pichia pastoris was inactive, and also showed a higher molecular weight than predicted because of glycosylation. The depression of laccase activity was attributable to the incorrect glycosylation at Asn97. Stlac2 expressed in Escherichia coli and after being renaturated from the inclusion body, the recombinant Stlac2 exhibited activity of 28.23 U/mg with 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as the substrate. The highest activity was observed at pH of 4.5 and the temperature of 60 °C. The activity of recombinant Stlac2 was inhibited by 10 mM Na+, Mg2+, Ca2+, Mn2+, and increased by 10 mM of Fe3+ with a relatively activity of 315% compared with no addition. Cu2+ did not affect enzyme activity. Recombinant Stlac2 was capable of decolorizing 67.08% of 20 mg/L malachite green in 15 min without any mediators. It is suggested that Stlac2 has potential industrial applications.ImportanceSetosphaeria turcica, an ascomycetous fungus causes northern corn leaf blight, product three laccase isozymes identified by Native-PAGE and ESI-MS/MS. The major expression laccase gene StLAC2 was expression in both eukaryotic and prokaryotic expression systems, which found incorrect glycosylation at Asn97 may result in the depression of laccase activity. The heterologous laccase Stlac2 decolorize organic dye malachite green, which had a potential industrial application.


2018 ◽  
Author(s):  
Olga A. Kudryavtseva ◽  
Ksenia R. Safina ◽  
Olga A. Vakhrusheva ◽  
Maria D. Logacheva ◽  
Aleksey A. Penin ◽  
...  

AbstractPodospora anserina is a model ascomycetous fungus which shows pronounced phenotypic senescence when grown on solid medium but possesses unlimited lifespan under submerged cultivation. In order to study the genetic aspects of adaptation of P. anserina to submerged cultivation, we initiated a long-term evolution experiment. In the course of the first four years of the experiment, 125 single-nucleotide substitutions and 23 short indels were fixed in eight independently evolving populations. Six proteins that affect fungal growth and development evolved in more than one population; in particular, the G-protein alpha subunit FadA evolved in seven out of eight experimental populations. Parallel evolution at the level of genes and pathways, an excess of nonsense and missense substitutions, and an elevated conservation of proteins and their sites where the changes occurred suggest that many of the observed allele replacements were adaptive and driven by positive selection.Author summaryLiving beings adapt to novel conditions that are far from their original environments in different ways. Studying mechanisms of adaptation is crucial for our understanding of evolution. The object of our interest is a multicellular fungus Podospora anserina. This fungus is known for its pronounced senescence and a definite lifespan, but it demonstrates an unlimited lifespan and no signs of senescence when grown under submerged conditions. Soon after transition to submerged cultivation, the rate of growth of P. anserina increases and its pigmentation changes. We wanted to find out whether there are any genetic changes that contribute to adaptation of P. anserina to these novel conditions and initiated a long-term evolutionary experiment on eight independent populations. Over the first four years of the experiment, 148 mutations were fixed in these populations. Many of these mutations lead to inactivation of the part of the developmental pathway in P. anserina, probably reallocating resources to vegetative proliferation in liquid medium. Our observations imply that strong positive selection drives changes in at least some of the affected protein-coding genes.Data AvailabilityGenome sequence data have been deposited at DDBJ/ENA/GenBank under accessions QHKV00000000 (founder genotype A; version QHKV01000000) and QHKU00000000 (founder genotype B; version QHKU01000000), with the respective BioSample accessions SAMN09270751 and SAMN09270757, under BioProject PRJNA473312. Sequencing data have been deposited at the SRA with accession numbers SRR7233712-SRR7233727, under the same BioProject.FundingExperimental work and sequencing were supported by the Russian Foundation for Basic Research (grants no. 16-04-01845a and 18-04-01349a). Bioinformatic analysis was supported by the Russian Science Foundation (grant no. 16-14-10173). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.


2018 ◽  
Vol 19 (7) ◽  
pp. 2142 ◽  
Author(s):  
Yaqin Yan ◽  
Qinfeng Yuan ◽  
Jintian Tang ◽  
Junbin Huang ◽  
Tom Hsiang ◽  
...  

Colletotrichum higginsianum is a hemibiotrophic ascomycetous fungus that causes economically important anthracnose diseases on numerous monocot and dicot crops worldwide. As a model pathosystem, the Colletotrichum–Arabidopsis interaction has the significant advantage that both organisms can be manipulated genetically. The goal of this review is to provide an overview of the system and to point out recent significant studies that update our understanding of the pathogenesis of C. higginsianum and resistance mechanisms of Arabidopsis against this hemibiotrophic fungus. The genome sequence of C. higginsianum has provided insights into how genome structure and pathogen genetic variability has been shaped by transposable elements, and allows systematic approaches to longstanding areas of investigation, including infection structure differentiation and fungal–plant interactions. The Arabidopsis-Colletotrichum pathosystem provides an integrated system, with extensive information on the host plant and availability of genomes for both partners, to illustrate many of the important concepts governing fungal–plant interactions, and to serve as an excellent starting point for broad perspectives into issues in plant pathology.


2017 ◽  
Vol 5 (43) ◽  
Author(s):  
Enrico Büttner ◽  
Anna Maria Gebauer ◽  
Martin Hofrichter ◽  
Christiane Liers ◽  
Harald Kellner

ABSTRACT We report here the draft genome of Kretzschmaria (Ustulina) deusta, an ascomycetous fungus that colonizes and substantially degrades hardwood and can infest living broad-leaved trees. The genome was assembled into 858 contigs, with a total size of 46.5 Mb, and 11,074 protein-coding genes were predicted.


Sign in / Sign up

Export Citation Format

Share Document