initial population density
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 5)

H-INDEX

11
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Lukas Eigentler ◽  
Nicola R Stanley-Wall ◽  
Fordyce A Davidson

Range expansion is the spatial spread of a population into previously unoccupied regions. Understanding range expansion is important for the study and successful manipulation and management of ecosystems, with applications ranging from controlling bacterial biofilm formation in industrial and medical environments to large scale conservation programmes for species undergoing climate-change induced habitat disruption. During range expansion, species typically encounter competitors. Moreover, the environment into which expansion takes place is almost always heterogeneous when considered at the scale of the individual. Despite the ubiquitous nature of these features, the impact of competition and spatial landscape heterogeneities on range expansion remains understudied. In this paper we present a theoretical framework comprising two competing generic species undergoing range expansion and use it to investigate the impact of spatial landscape heterogeneities on range expansion with a particular focus on its effect on competition dynamics. We reveal that the area covered by range expansion during a fixed time interval is highly variable due to the fixed landscape heterogeneities. Moreover, we report significant variability in competitive outcome (relative abundance of a focal species) but determine that this is induced by low initial population densities, independent of landscape heterogeneities. We further show that both area covered by range expansion and competitive outcome can be accurately predicted by a Voronoi tessellation with respect to an appropriate metric, which only requires information on the spatial landscape and the response of each species to that landscape. Finally, we reveal that if species interact antagonistically during range expansion, the dominant mode of competition depends on the initial population density. Antagonistic actions determine competitive outcome if the initial population density is high, but competition for space is the dominant mode of competition if the initial population density is low.


Author(s):  
Leslie Sharon Lozada-Villanueva ◽  
◽  
Teodocia Gloria Casa-Ruiz ◽  
Cristiano Bellé ◽  
◽  
...  

The effect of initial population density (Pi) of the peanut root-knot nematode, Melodoigyne arenaria, on curly leaf parsley growth was assessed in this study. The population densities of M. arenaria ranged from 0 to 64 eggs + second-stage juveniles (J2)/cm3 soil in sterile sandbags. The root gall index (RGI), reproduction factor (RF), fresh leaf weight (FLW), dry leaf weight (DLW), root fresh weight (RFW), root length (RL), leaf height (LH), and chlorophyll index (SPAD) were determined at 90 days after inoculation. FLW, DLW, RFW, LH, and SPAD data were fitted to the Seinhorst equation, y = m + (1 - m) zPi-T, to determine the tolerance limit T = 0.25 eggs +J2/cm3 soil for FLW, DLW, RFW, and LH, with relative means (m) of 0.52, 0.24, 0.22, and 0.4 respectively; conversely, the T value for SPAD was 0.125 eggs + J2/cm3 soil and with a m of 0.26. All biometric variables decreased with an increase in the initial population density (Pi). Nevertheless, the highest RF of M. arenaria in parsley was 78.92 for a Pi = 8 eggs + J2/cm3 soil, with an RGI value of 5 from Pi = 1 eggs + J2/cm3. Curly leaf parsley growth decreased with an increase in Pi of M. arenaria.


Plant Disease ◽  
2020 ◽  
Author(s):  
Krishna Acharya ◽  
Guiping Yan ◽  
Addison Plaisance

Microplot experiments were conducted to evaluate the effects of cover crops on population reduction of a major soybean pest, soybean cyst nematode (SCN; Heterodera glycines Ichinohe) in 2016 and 2017. Ten crop species, including annual ryegrass (Lolium multiflorum L), Austrian winter pea (Pisum sativum L. subsp. arvense), carinata (Brassica carinata A. Braun), faba bean (Vicia faba Roth), foxtail millet [Setaria italica (L) P. Beauvois], daikon radish (Raphanus sativus L.), red clover (Trifolium pratense L.), sweetclover (Melilotus officinalis L.), turnip (Brassica rapa subsp. rapa L.), and winter rye (Secale cereale L.) were planted along with susceptible soybean [Glycine max (L.) Merr., cv. Barnes] in soil naturally infested with each of two SCN populations (SCN103 and SCN2W) from two North Dakota soybean fields. Crops were grown in large plastic pots for 75 days in an outdoor environment (Microplot). Soil samples were collected from each pot for nematode extraction and SCN eggs were counted to determine the final SCN egg density. The population reduction was determined for each crop, and non-planted natural soil (fallow). All the tested crops and non-planted natural soil had significantly (P < 0.0001) lower final population densities compared to susceptible soybean (Barnes). Also, a significant difference (P < 0.0001) was observed between the SCN population suppressions caused by cover crops versus the fallow treatment. All cover crops except Austrian winter pea, carinata, faba bean, and foxtail millet had consistently lower SCN egg numbers than in fallow in both years of the experiments. The average population reductions of SCN by the cover crops ranged from 44 to 67% in comparison with the initial population density, while the fallow had natural reductions from 4 to 24%. Annual ryegrass and daikon radish reduced SCN egg numbers to a greater extent than the other cover crops, with an average of 65 and 67% reduction of initial population density, respectively from two years. The results suggested that cover crops reduced the SCN populations in external microplot conditions, and their use has great potential for improving SCN management in infested fields.


Author(s):  
Svetlana Yu. Gorbunova ◽  
Rudolf P. Trenkenshu

The possibility of obtaining an algologically pure culture of Tetraselmis viridis, grown on the Black Sea water in non-sterile conditions, was shown experimentally. Our experiments showed that at low initial population density of the culture after 1–3 days, there was an infection of the culture with blue-green species of microalgae (Oscillatoria sp.). Thrice repeated mechanical removal of blue-green microalgae cells by filtering the infected culture allowed obtaining an algologically pure culture of T. viridis. Under similar conditions of T. viridis cultivation, but with the initial addition of NaCl (15 g/l) to the nutrient medium aimed at increasing salinity to the Mediterranean level, there was no contamination of the culture.


Author(s):  
Kun Zhang ◽  
Quan Wan ◽  
Yi-Long Xi

Intensive interspecific competition for limited resource often can result in the exclusion of inferior competitors, decrease the species diversity and alter the structure of the zooplankton community. Competitive experiments between Brachionus calyciflorus and Brachionus angularis were conducted at three Scenedesmus densities (0.5 × 106, 1.0 × 106 and 2.0 × 106 cells ml−1) and four initial inoculation densities (numerically, 100% B. calyciflorus, 75% B. calyciflorus and 25% B. angularis, 50% each of the two species, 25% B. calyciflorus and 75% B. angularis, and 100% B. angularis). The results showed that at the low food level, B. angularis outcompeted B. calyciflorus and vice versa at the high food levels. At the intermediate food level, B. angularis was displaced by B. calyciflorus at nearly all the initial inoculation densities except for 75% B. angularis, at which both species coexisted until the termination of the experiment. When grown alone at 0.5 × 106, 1.0 × 106 and 2.0 × 106 cells ml−1 of Scenedesmus, B. calyciflorus reached the peak abundance values of 34 ± 4, 69 ± 5 and 101 ± 9 individuals ml−1 and had population growth rates of 0.608 ± 0.032, 0.654 ± 0.033 and 0.518 ± 0.039 d−1, respectively. The corresponding values for B. angularis were 265 ± 8, 330 ± 30 and 802 ± 87 individuals ml−1 and 0.623 ± 0.020, 0.770 ± 0.036 and 0.871 ± 0.013 d−1. The results suggest that the outcome of competition depends not only on the size of the competing species and food availability but also on their colonizing density.


2015 ◽  
Vol 73 (7) ◽  
pp. 1935-1945 ◽  
Author(s):  
Mariana Padrón ◽  
Katell Guizien

Abstract Accounting for connectivity is essential in marine spatial planning and the proper design and management of marine protected areas, given that their effectiveness depends on the patterns of dispersal and colonization between protected and non-protected areas. The genetic structure of populations is commonly used to infer connectivity among distant populations. Here, we explore how population genetic structure is affected by pre- and settlement limitations with a spatially explicit coupled metapopulation-gene flow model that simulates the effect of demographic fluctuations on the allele frequencies of a set of populations. We show that in closed populations, regardless of population growth rate, the maintenance of genetic diversity at saturating initial population density increases with species life expectancy as a result of density-dependent recruitment control. Correlatively, at low initial population density, the time at which a population begins to lose its genetic diversity is driven larval and post-settlement mortality (comprised in the recruitment success parameter)—the larger the recruitment success, the stronger the genetic drift. Different spatial structures of connectivity established for soft bottom benthic invertebrates in the Gulf of Lions (NW Mediterranean, France) lead to very different results in the spatial patterns of genetic structuration of the metapopulation, with high genetic drift in sites where the local retention rate was larger than 2%. The effect of recruitment failure and the loss of key source populations on heterozygosity confirm that transient demographic fluctuations help maintain genetic diversity in a metapopulation. This study highlights the role of intraspecific settlement limitations due to lack of space when the effective number of breeders approaches saturating capacity, causing a strong reduction in effective reproduction. The present model allows to: (i) disentangle the relative contribution of local demography and environmental connectivity in shaping seascape genetics, and (ii) perform in silico evaluations of different scenarios for marine spatial planning.


Sign in / Sign up

Export Citation Format

Share Document