trace length
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 9)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 13 (24) ◽  
pp. 5086
Author(s):  
Lidia Loiotine ◽  
Charlotte Wolff ◽  
Emmanuel Wyser ◽  
Gioacchino Francesco Andriani ◽  
Marc-Henri Derron ◽  
...  

Quantitative characterization of discontinuities is fundamental to define the mechanical behavior of discontinuous rock masses. Several techniques for the semi-automatic and automatic extraction of discontinuities and their properties from raw or processed point clouds have been introduced in the literature to overcome the limits of conventional field surveys and improve data accuracy. However, most of these techniques do not allow characterizing flat or subvertical outcrops because planar surfaces are difficult to detect within point clouds in these circumstances, with the drawback of undersampling the data and providing inappropriate results. In this case, 2D analysis on the fracture traces are more appropriate. Nevertheless, to our knowledge, few methods to perform quantitative analyses on discontinuities from orthorectified photos are publicly available and do not provide a complete characterization. We implemented scanline and window sampling methods in a digital environment to characterize rock masses affected by discontinuities perpendicular to the bedding from trace maps, thus exploiting the potentiality of remote sensing techniques for subvertical and low-relief outcrops. The routine, named QDC-2D (Quantitative Discontinuity Characterization, 2D) was compiled in MATLAB by testing a synthetic dataset and a real case study, from which a high-resolution orthophoto was obtained by means of Structure from Motion technique. Starting from a trace map, the routine semi-automatically classifies the discontinuity sets and calculates their mean spacing, frequency, trace length, and persistence. The fracture network is characterized by means of trace length, intensity, and density estimators. The block volume and shape are also estimated by adding information on the third dimension. The results of the 2D analysis agree with the input used to produce the synthetic dataset and with the data collected in the field by means of conventional geostructural and geomechanical techniques, ensuring the procedure’s reliability. The outcomes of the analysis were implemented in a Discrete Fracture Network model to evaluate their applicability for geomechanical modeling.


2021 ◽  
Vol 5 (ISS) ◽  
pp. 1-17
Author(s):  
Edwin Chau ◽  
Jiakun Yu ◽  
Cagatay Goncu ◽  
Anusha Withana

Eyes-free operation of mobile devices is critical in situations where the visual channel is either unavailable or attention is needed elsewhere. In such situations, vibrotactile tracing along paths or lines can help users to navigate and identify symbols and shapes without visual information. In this paper, we investigated the applicability of different metrics that can measure the effectiveness of vibrotactile line tracing methods on touch screens. In two user studies, we compare trace Length Error, Area Error, and Fréchet Distance as alternatives to commonly used trace Time. Our results show that a lower Fréchet distance is correlated better with the comprehension of a line trace. Furthermore, we show that distinct feedback methods perform differently with varying geometric features in lines and propose a segmented line design for tactile line tracing studies. We believe the results will inform future designs of eyes-free operation techniques and studies.


2020 ◽  
Vol 88 ◽  
pp. 870-887
Author(s):  
Fan Huang ◽  
Chi Yao ◽  
Jianhua Yang ◽  
Chen He ◽  
Yulong Shao ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Xiaoxue Huo ◽  
Qiong Wu ◽  
Huiming Tang ◽  
Zhen Meng ◽  
Di Wang ◽  
...  

Trace intensity is defined as mean total trace length of discontinuities per unit area, which is an important geometric parameter to describe fracture networks. The probability of each trace appearing in the sampling surface is different since discontinuity orientation has a scatter and is probabilistically distributed, so this factor should be taken into account in trace intensity estimation. This paper presents an approach to estimate the two-dimensional trace intensity by considering unequal appearing probability for discontinuities sampled by rectangular windows. The estimation method requires the number of discontinuities intersecting the window, the appearing probability of discontinuities with both ends observed, one end observed, and both ends censored, and the mean trace length of discontinuities intersecting the window. The new estimator is validated by using discontinuity data from an outcrop in Wenchuan area in China. Similarly, circular windows are used along with Mauldon’s equation to calculate trace intensity using discontinuity trace data of the same outcrop as a contrast. Results indicate that the proposed new method based on rectangular windows shows close accuracy and less variability than that of the method based on circular windows due to the influence of finite sample size and the variability of location of the window and has advantage in application to sampling surfaces longer in one direction than in the other such as tunnel cross sections and curved sampling surfaces such as outcrops that show some curvature.


2020 ◽  
Vol 20 (8) ◽  
pp. 04020116
Author(s):  
B. Gao ◽  
D. D. Pan ◽  
Z. H. Xu ◽  
L. W. Zhang ◽  
S. L. Zhao

Sign in / Sign up

Export Citation Format

Share Document