invasion dynamics
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 29)

H-INDEX

29
(FIVE YEARS 2)

2021 ◽  
Vol 118 (51) ◽  
pp. e2116211118
Author(s):  
Cornelia Jaspers ◽  
Moritz Ehrlich ◽  
José Martin Pujolar ◽  
Sven Künzel ◽  
Till Bayer ◽  
...  

Invasion rates have increased in the past 100 y irrespective of international conventions. What characterizes a successful invasion event? And how does genetic diversity translate into invasion success? Employing a whole-genome perspective using one of the most successful marine invasive species world-wide as a model, we resolve temporal invasion dynamics during independent invasion events in Eurasia. We reveal complex regionally independent invasion histories including cases of recurrent translocations, time-limited translocations, and stepping-stone range expansions with severe bottlenecks within the same species. Irrespective of these different invasion dynamics, which lead to contrasting patterns of genetic diversity, all nonindigenous populations are similarly successful. This illustrates that genetic diversity, per se, is not necessarily the driving force behind invasion success. Other factors such as propagule pressure and repeated introductions are an important contribution to facilitate successful invasions. This calls into question the dominant paradigm of the genetic paradox of invasions, i.e., the successful establishment of nonindigenous populations with low levels of genetic diversity.


2021 ◽  
Author(s):  
Chadi M Saad-Roy ◽  
Simon A Levin ◽  
Julia Rose Gog ◽  
Jeremy Farrar ◽  
Caroline E Wagner ◽  
...  

Vaccination provides a powerful tool for mitigating and controlling the COVID-19 pandemic. However, a number of factors reduce these potential benefits. The first problem arises from heterogeneities in vaccine supply and uptake: from global inequities in vaccine distribution, to local variations in uptake derived from vaccine hesitancy. The second complexity is biological: though several COVID-19 vaccines offer substantial protection against infection and disease, 'breakthrough' reinfection of vaccinees (and subsequent retransmission from these individuals) can occur, driven especially by new viral variants. Here, using a simple epidemiological model, we show that the combination of infection of remaining susceptible individuals and breakthrough infections of vaccinees can have significant effects in promoting infection of invading variants, even when vaccination rates are high and onward transmission from vaccinees relatively weak. Elaborations of the model show how heterogeneities in immunity and mixing between vaccinated and unvaccinated sub-populations modulate these effects, underlining the importance of quantifying these variables. Overall, our results indicate that high vaccination coverage still leaves no room for complacency if variants are circulating that can elude immunity, even if this happens at very low rates.


2021 ◽  
Author(s):  
Alexandre R. T. Figueiredo ◽  
Özhan Özkaya ◽  
Rolf Kümmerli ◽  
Jos Kramer

Author(s):  
Arjen Mascini ◽  
Marijn Boone ◽  
Stefanie Van Offenwert ◽  
Shan Wang ◽  
Veerle Cnudde ◽  
...  

Author(s):  
Kristina Makasheva ◽  
Louise C. Bryan ◽  
Carolin Anders ◽  
Sherin Panikulam ◽  
Martin Jinek ◽  
...  

Diversity ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 380
Author(s):  
Barbara Sladonja ◽  
Danijela Poljuha ◽  
Marin Krapac ◽  
Mirela Uzelac ◽  
Maja Mikulic-Petkovsek

Dittrichia viscosa (L.) Greuter is a shrub native to the Mediterranean, however, declared as a very invasive species in Australia and North America. Environmental (climatic) and socio-economic (land abandonment) changes can trigger different adaptive mechanisms and cause changes in species behavior, influencing invasion dynamics. Motivated by the recently noticed change of D. viscosa behavior in its native Mediterranean habitat, we discuss the invasion properties, its behavior in the native habitat and new areas, and its management options. We review the species’ adverse effects and its positive ecosystem services in the Millennium Ecosystem Assessment framework. In this review, we provide information on the phytochemical properties of D. viscosa and highlight its potential use in ecological agriculture, phytopharmacy, and medicine. The presented data is useful for developing effective management of this contentious species, with emphasis on mitigating environmental and economic damages, especially in agriculture. The final aim is to achieve a balanced ecosystem, providing a high level of possible services (provisioning, regulating, cultural and supporting).


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Prateek Verma ◽  
R. Guy Reeves ◽  
Chaitanya S. Gokhale

Abstract Background Synthetic gene drive technologies aim to spread transgenic constructs into wild populations even when they impose organismal fitness disadvantages. The extraordinary diversity of plausible drive mechanisms and the range of selective parameters they may encounter makes it very difficult to convey their relative predicted properties, particularly where multiple approaches are combined. The sheer number of published manuscripts in this field, experimental and theoretical, the numerous techniques resulting in an explosion in the gene drive vocabulary hinder the regulators’ point of view. We address this concern by defining a simplified parameter based language of synthetic drives. Results Employing the classical population dynamics approach, we show that different drive construct (replacement) mechanisms can be condensed and evaluated on an equal footing even where they incorporate multiple replacement drives approaches. Using a common language, it is then possible to compare various model properties, a task desired by regulators and policymakers. The generalization allows us to extend the study of the invasion dynamics of replacement drives analytically and, in a spatial setting, the resilience of the released drive constructs. The derived framework is available as a standalone tool. Conclusion Besides comparing available drive constructs, our tool is also useful for educational purpose. Users can also explore the evolutionary dynamics of future hypothetical combination drive scenarios. Thus, our results appraise the properties and robustness of drives and provide an intuitive and objective way for risk assessment, informing policies, and enhancing public engagement with proposed and future gene drive approaches.


Science ◽  
2021 ◽  
pp. eabj0113
Author(s):  
Moritz U.G. Kraemer ◽  
Verity Hill ◽  
Christopher Ruis ◽  
Simon Dellicour ◽  
Sumali Bajaj ◽  
...  

Understanding the causes and consequences of the emergence of SARS-CoV-2 variants of concern is crucial to pandemic control yet difficult to achieve, as they arise in the context of variable human behavior and immunity. We investigate the spatial invasion dynamics of lineage B.1.1.7 by jointly analyzing UK human mobility, virus genomes, and community-based PCR data. We identify a multi-stage spatial invasion process in which early B.1.1.7 growth rates were associated with mobility and asymmetric lineage export from a dominant source location, enhancing the effects of B.1.1.7’s increased intrinsic transmissibility. We further explore how B.1.1.7 spread was shaped by non-pharmaceutical interventions and spatial variation in previous attack rates. Our findings show that careful accounting of the behavioral and epidemiological context within which variants of concern emerge is necessary to interpret correctly their observed relative growth rates.


Sign in / Sign up

Export Citation Format

Share Document