kl factor
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 1)

H-INDEX

4
(FIVE YEARS 0)

2019 ◽  
Vol 179 (4) ◽  
pp. 32-39
Author(s):  
Yuzo AOYAGI

To reduce exhaust NOx and smoke, it is important to measure flame temperature and soot amount in combustion chamber. In diesel combustion it is effective to use the two-color method for the measurement of the flame temperature and KL factor, which is related with soot concentration. The diesel flame was directly and continuously observed from the combustion chamber at running engine condition by using a bore scope and a high-speed video camera. The experimental single cylinder engine has 2.0-liter displacement and has the ability with up to five times of the boost pressure than the naturally aspirated engine by external super-charger. The devices of High Boost, Wide Range and High EGR rate at keeping a relatively high excess air ratio were installed in this research engine in order to reduce exhaust NOx emission without smoke deterioration from diesel engines. The video camera nac GX-1 was used in this study. From observed data under the changing EGR rates, the flame temperature and KL factor were obtained by the software of two-color method analysis. The diesel combustion processes are understood well by analyzing high-speed movies of the diesel flame motion and its temperature. The NOx and smoke are mutually related to maximum flame temperature and also it is possible to reduce simultaneously both NOx and soot emissions by high EGR rate in a single cylinder diesel engine.


Author(s):  
Wei Jing ◽  
Zengyang Wu ◽  
William L. Roberts ◽  
Tiegang Fang

Soot formation process was investigated for biomass-based renewable diesel fuel, such as biomass to liquid (BTL), and conventional diesel combustion under varied fuel quantities injected into a constant volume combustion chamber. Soot measurement was implemented by two-color pyrometry under quiescent type diesel engine conditions (1000 K and 21% O2 concentration). Different fuel quantities, which correspond to different injection widths from 0.5 ms to 2 ms under constant injection pressure (1000 bar), were used to simulate different loads in engines. For a given fuel, soot temperature and KL factor show a different trend at initial stage for different fuel quantities, where a higher soot temperature can be found in a small fuel quantity case. but a higher KL factor is observed in a large fuel quantity case generally. Another difference occurs at the end of combustion due to the termination of fuel injection. Additionally, BTL flame has a lower soot temperature, especially under a larger fuel quantity (2 ms injection width). Meanwhile, average soot level is lower for BTL flame, especially under a lower fuel quantity (0.5 ms injection width). BTL shows an overall low sooting behavior with low soot temperature compared to diesel; however, trade-off between soot level and soot temperature needs to be carefully selected when different loads are used.


Author(s):  
Wei Jing ◽  
Zengyang Wu ◽  
William L. Roberts ◽  
Tiegang Fang

Soot formation process was investigated for biomass-based renewable diesel fuel, such as biomass to liquid (BTL), and conventional diesel combustion under varied fuel quantities injected into a constant volume combustion chamber. Soot measurement was implemented by two-color pyrometry under quiescent type diesel engine conditions (1000 K and 21% O2 concentration). Different fuel quantities, which correspond to different injection widths from 0.5 ms to 2 ms under constant injection pressure (1000 bar), were used to simulate different loads in engines. For a given fuel, soot temperature and KL factor show a different trend at initial stage for different fuel quantities, where a higher soot temperature can be found in a small fuel quantity case but a higher KL factor is observed in a large fuel quantity case generally. Another difference occurs at the end of combustion due to the termination of fuel injection. Additionally, BTL flame has a lower soot temperature, especially under a larger fuel quantity (2 ms injection width). Meanwhile, average soot level is lower for BTL flame, especially under a lower fuel quantity (0.5 ms injection width). BTL shows an overall low sooting behavior with low soot temperature compared to diesel, however, trade-off between soot level and soot temperature needs to be carefully selected when different loads are used.


Energy ◽  
2015 ◽  
Vol 91 ◽  
pp. 758-771 ◽  
Author(s):  
Wei Jing ◽  
Zengyang Wu ◽  
Weibo Zhang ◽  
Tiegang Fang

Author(s):  
Kan Zha ◽  
Radu-Catalin Florea ◽  
Marcis Jansons

Biodiesel is a desirable alternative fuel for the diesel engine due to its low engine-out soot emission tendency. When blended with petroleum-based diesel fuels, soot emissions generally decrease in proportion to the volume fraction of biodiesel in the mixture. While comparisons of engine-out soot measurements between biodiesel blends and petroleum-based diesel have been widely reported, in-cylinder soot evolution has not been experimentally explored to the same extent. To elucidate the soot emission reduction mechanism of biodiesel, a single-cylinder optically-accessible diesel engine was used to compare the in-cylinder soot evolution when fueled with ultra-low sulfur diesel (ULSD) to that using a B20 biodiesel blend (20% vol./vol. biodiesel ASTM D6751-03A). Soot temperature and KL factors are simultaneously determined using a novel two-color optical thermometry technique implemented with a high-speed CMOS color camera having wide-band Bayer filters. The crank-angle resolved data allows quantitative comparison of the rate of in-cylinder soot formation. High-speed spray images show that B20 has more splashing during spray wall impingement than ULSD, distributing rebounding fuel droplets over a thicker annular ring interior to the piston bowl periphery. The subsequent soot luminescence is observed by high-speed combustion imaging and soot temperature and KL factor measurements. B20 forms soot both at low KL magnitudes over large areas between fuel jets, and at high values among remnants of the fuel spray, along its axis and away from the bowl edge. In contrast, ULSD soot luminescence is observed exclusively as pool burning on the piston bowl surfaces resulting from spray wall impingement. The soot KL factor evolution during B20 combustion indicates earlier and significantly greater soot formation than with ULSD. B20 combustion is also observed to have a greater soot oxidation rate, which results in lower late-cycle soot emissions. For both fuels, higher fuel injection pressure led to lower late-cycle soot KL levels. The apparent rate of heat release (ARHR) analysis under steady skip-fire conditions indicates that B20 combustion is less sensitive to wall temperature than that observed with ULSD due to a lesser degree of pool burning. B20 was found to have both a shorter ignition delay and shorter combustion duration than ULSD.


Author(s):  
Kan Zha ◽  
Radu-Catalin Florea ◽  
Marcis Jansons

Biodiesel is a desirable alternative fuel for the diesel engine due to its low engine-out soot emission tendency. When blended with petroleum-based diesel fuels, soot emissions generally decrease in proportion to the volume fraction of biodiesel in the mixture. While comparisons of engine-out soot measurements between biodiesel blends and petroleum-based diesel have been widely reported, in-cylinder soot evolution has not been experimentally explored to the same extent. To elucidate the soot emission reduction mechanism of biodiesel, a single-cylinder optically-accessible diesel engine was used to compare the in-cylinder soot evolution when fueled with ultra-low sulfur diesel (ULSD) to that using a B20 biodiesel blend (20% vol/vol biodiesel ASTM D6751-03A). Soot temperature and KL factors are simultaneously determined using a novel two-color optical thermometry technique implemented with a high-speed CMOS color camera having wide-band Bayer filters. The crank-angle resolved data allows quantitative comparison of the rate of in-cylinder soot formation. High-speed spray images show that B20 has more splashing during spray wall impingement than ULSD, distributing rebounding fuel droplets over a thicker annular ring interior to the piston bowl periphery. The subsequent soot luminescence is observed by high-speed combustion imaging and soot temperature and KL factor measurements. B20 forms soot both at low KL magnitudes over large areas between fuel jets, and at high values among remnants of the fuel spray, along its axis and away from the bowl edge. In contrast, ULSD soot luminescence is observed exclusively as pool burning on the piston bowl surfaces resulting from fuel wall impingement. The soot KL factor evolution during B20 combustion indicates earlier and significantly greater soot formation than with ULSD. B20 combustion is also observed to have a greater soot oxidation rate which results in lower engine-out soot emissions. Measured soot temperatures near 1875K were similar for the two fuels for the duration of combustion. For both fuels, higher fuel injection pressure led to lower late-cycle soot KL levels. The trends of soot natural luminosity correlated well with the trends of soot KL factor, suggesting that relatively simple measurements of combustion luminosity may provide somewhat quantitative information about in-cylinder soot formation and oxidation. The apparent rate of heat release (ARHR) analysis under steady skip-fire conditions indicates that B20 combustion is less sensitive to wall temperature than that observed with ULSD due to a lesser degree of pool burning. B20 was found to have both a shorter ignition delay and shorter combustion duration than ULSD.


Author(s):  
Patrick Kirchen ◽  
Peter Obrecht ◽  
Konstantinos Boulouchos ◽  
Andrea Bertola

The operation and emissions of a four cylinder, passenger car common-rail diesel engine operating with two different fuels was investigated on the basis of exhaust-stream and in-cylinder soot measurements, as well as a thermodynamic analysis of the combustion process. The two fuels considered were a standard diesel fuel and a synthetic diesel (fuel two) with a lower aromatic content, evaporation temperature, and cetane number than the standard diesel. The exhaust-stream soot emissions, measured using a filter smoke number system, as well as a photo-acoustic soot sensor (AVL Micro Soot Sensor), were lower with the second fuel throughout the entire engine operating map. To elucidate the cause of the reduced exhaust-stream soot emissions, the in-cylinder soot temperature and the KL factor (proportional to concentration) were measured using miniature, three-color pyrometers mounted in the glow plug bores. Using the maximum KL factor value to quantify the soot formation process, it was seen that for all operating points, less soot was formed in the combustion chamber using the second fuel. The oxidation of the soot, however, was not strongly influenced by the fuel, as the relative oxidized soot fraction was not significantly different for the two fuels. The reduced soot formation of fuel two was attributed to the lower aromatic content of the fuel. The soot cloud temperatures for operation with the two fuels were not seen differ significantly. Similar correlations between the cylinder-out soot emissions, characterized using the pyrometers, and the exhaust-stream soot emissions were seen for both fuels. The combustion process itself was only seen to differ between the two fuels to a much lesser degree than the soot formation process. The predominant differences were seen as higher maximum fuel conversion rates during premixed combustion at several operating points, when fuel two was used. This was attributed to the lower evaporation temperatures and longer ignition delays (characterized by the lower cetane number) leading to larger premixed combustion fractions.


Author(s):  
Patrick Kirchen ◽  
Konstantinos Boulouchos ◽  
Peter Obrecht ◽  
Andrea Bertola

The operation and emissions of a four cylinder, passenger car common-rail diesel engine operating with two different fuels was investigated on the basis of exhaust stream and in-cylinder soot measurements, as well as a thermodynamic analysis of the combustion process. The two fuels considered were a standard diesel fuel and a synthetic diesel (fuel two) with a lower aromatic content, evaporation temperature, and cetane number than the standard diesel. The exhaust stream soot emissions, measured using an FSN system, as well as a photo-acoustic soot sensor (AVL Micro Soot Sensor), were lower with the second fuel throughout the entire engine operating map. To elucidate the cause of the reduced exhaust stream soot emissions, the in-cylinder soot temperature and KL factor (proportional to concentration) were measured using miniature, three color pyrometers mounted in the glow plug bores. Using the maximum KL factor value to quantify the soot formation process, it was seen that for all operating points, less soot was formed in the combustion chamber using the second fuel. The oxidation of the soot, however, was not strongly influenced by the fuel, as the relative oxidized soot fraction was not significantly different for the two fuels. The reduced soot formation of fuel two was attributed to the lower aromatic content of the fuel. The soot cloud temperatures for operation with the two fuels were not seen differ significantly. Similar correlations between the cylinder-out soot emissions, characterized using the pyrometers, and the exhaust stream soot emissions were seen for both fuels. The combustion process itself, was only seen to differ between the two fuels to a much lesser degree than the soot formation process. The predominant differences were seen as higher maximum fuel conversion rates during premixed combustion at several operating points, when fuel two was used. This was attributed to the lower evaporation temperatures and longer ignition delays (characterized by the lower cetane number) leading to larger premixed combustion fractions.


Sign in / Sign up

Export Citation Format

Share Document