A Mid-Node Mass Lumping Scheme for Accurate Structural Vibration Analysis with Serendipity Finite Elements

2021 ◽  
Vol 13 (01) ◽  
pp. 2150013
Author(s):  
Songyang Hou ◽  
Xiwei Li ◽  
Dongdong Wang ◽  
Zhiwei Lin

A mid-node mass lumping scheme is proposed to formulate the lumped mass matrices of serendipity elements for accurate structural vibration analysis. Since the row-sum technique leads to unacceptable negative lumped mass components for serendipity elements, the diagonal scaling HRZ method is frequently employed to construct lumped mass matrices of serendipity elements. In this work, through introducing a lumped mass matrix template that includes the HRZ lumped mass matrix as a special case, an analytical frequency accuracy measure is rationally derived with particular reference to the classical eight-node serendipity element. The theoretical results clearly reveal that the standard HRZ mass matrix actually does not offer the optimal frequency accuracy in accordance with the given lumped mass matrix template. On the other hand, by employing the nature of non-negative shape functions associated with the mid-nodes of serendipity elements, a mid-node lumped mass matrix (MNLM) formulation is introduced for the mass lumping of serendipity elements without corner nodal mass components, which essentially corresponds to the optimal frequency accuracy in the context of the given lumped mass matrix template. Both theoretical and numerical results demonstrate that MNLM yields better frequency accuracy than the standard HRZ lumped mass matrix formulation for structural vibration analysis.

2018 ◽  
Vol 18 (10) ◽  
pp. 1850121 ◽  
Author(s):  
Junchao Wu ◽  
Dongdong Wang ◽  
Zeng Lin

An accurate meshfree formulation with higher order mass matrix is proposed for the structural vibration analysis with particular reference to the 1D rod and 2D membrane problems. Unlike the finite element analysis with an explicit mass matrix, the mass matrix of Galerkin meshfree formulation usually does not have an explicit expression due to the rational nature of meshfree shape functions. In order to develop a meshfree higher order mass matrix, a frequency error measure is derived by using the entries of general symmetric stiffness and mass matrices. The frequency error is then expressed as a series expansion of the nodal distance, in which the coefficients of each term are related to the meshfree stiffness and mass matrices. It is theoretically proved that the constant coefficient in the frequency error vanishes identically provided with the linear completeness condition, which does not rely on any specific form of the shape functions. Furthermore, a meshfree higher order mass matrix is developed through a linear combination of the consistent and lumped mass matrices, in which the optimal mass combination coefficient is attained via eliminating the lower order error terms. In particular, the proposed higher order mass matrix with Galerkin meshfree formulation achieves a fourth-order accuracy when the moving least squares or reproducing kernel (RK) meshfree approximation with linear basis function is employed; nonetheless, the conventional meshfree method only gives a second-order accuracy for the frequency computation. In the multidimensional formulation, the optimal mass combination coefficient is a function of the wave propagation angle so that the proposed accurate meshfree method is applicable to the computation of frequencies associated with any wave propagation direction. The superconvergence of the proposed meshfree higher order mass matrix formulation is validated via numerical examples.


2012 ◽  
Vol 12 (02) ◽  
pp. 213-231 ◽  
Author(s):  
YAO CHEN ◽  
JIAN FENG

As conventional approaches for morphology and natural vibration analysis do not make full use of the symmetry of structures, the computational cost is significantly raised with increasing number of nodes. In this paper, we propose a simplified technique used to analyze initial prestress distribution and natural vibration of tensegrity structures based on group theory. First, the conditions of symmetry and equilibrium equations for tensegrity structures were established on the basis of the symmetry-adapted coordinate systems found by group theory. Then the initial prestress modes could be found from the null space of the independent sub-matrix of symmetry-adapted equilibrium matrix. Subsequently, the tangent stiffness matrix and the lumped mass matrix were block-diagonalized using symmetry. The generalized eigenvalue problems were simplified by solving the mutually independent subspaces, with the corresponding natural frequencies and vibration modes obtained. Two illustrative examples demonstrate the general procedure, and show the superiority in reducing the difficulty of initial prestress distribution and natural vibration analysis. When compared with numerical results obtained by Abaqus and those of Murakami, the proposed method is shown to be more accurate and efficient.


Author(s):  
Afshin Taghvaeipour ◽  
Jorge Angeles ◽  
Larry Lessard

The elastodynamic analysis of a two-limb Schönflies motion generators is the subject of this paper. This analysis calls for the calculation of the stiffness and mass matrices. By resorting to the generalized spring concept, the posture-dependent stiffness matrix of the robot is computed. With the motors locked, the motion caused by the flexible components leads to the robot mass matrix. The generalized springs help to simplify the model. Although this simplification filters out the higher natural frequencies, it eases the computation of the posture-dependent stiffness and mass matrices. This provides a valuable tool to simplify the evaluation of the robot performance from an elastodynamic point of view, while the robot executes a given task. Finally, the modal analysis of the McGill Schönflies motion generator, while executing a pick-and-place operation, is conducted; under these conditions, the evolution of the first six natural frequencies is obtained. The elastodynamic performance of the robot for the given task is assessed using the results of the analysis.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2288
Author(s):  
Hongming Luo ◽  
Guanhua Sun

The PU (partition-of-unity) based FE-RPIM QUAD4 (4-node quadrilateral) element was proposed for statics problems. In this element, hybrid shape functions are constructed through multiplying QUAD4 shape function with radial point interpolation method (RPIM). In the present work, the FE-RPIM QUAD4 element is further applied for structural dynamics. Numerical examples regarding to free and forced vibration analyses are presented. The numerical results show that: (1) If CMM (consistent mass matrix) is employed, the FE-RPIM QUAD4 element has better performance than QUAD4 element under both regular and distorted meshes; (2) The DLMM (diagonally lumped mass matrix) can supersede the CMM in the context of the FE-RPIM QUAD4 element even for the scheme of implicit time integration.


2013 ◽  
Vol 675 ◽  
pp. 158-161
Author(s):  
Lv Zhou Ma ◽  
Jian Liu ◽  
Yu Qin Yan ◽  
Xun Lin Diao

Based on positional finite element method (FEM), a new, simple and accurate lumped mass matrix to solve dynamic geometrical nonlinear problems of materials applied to variable cross-section beam element has been proposed. According to Hamilton theory and the concept of Kinetic energy, concentrate the beam element mass to the two nodes in certain proportion, the lumped mass matrix is deduced. The lumped mass matrix is diagonal matrix and its calculated quantity is less than using consistent mass matrix about properties of materials under the same calculation precision.


1994 ◽  
Vol 09 (01) ◽  
pp. 41-50 ◽  
Author(s):  
KEN-ITI MATUMOTO ◽  
DAIJIRO SUEMATSU

We apply the empirical quark mass matrices to the lepton sector and study the solar neutrino problem and the atmospheric vμ deficit problem simultaneously. We show that their consistent explanation is possible on the basis of these matrices. The lepton sector mass matrices need the phase structure which is different from the ones of the quark sector. However, even if the phase structure of the mass matrices is identical in both sectors, an interesting suppression mechanism of sin 2 2θ12 which is related to the solar neutrino problem can be induced from the right-handed neutrino Majorana mass matrix. We discuss such a possibility through the concrete examples.


2019 ◽  
Vol 161 (A1) ◽  

The presence of cut outs at different positions of laminated shell component in marine and aeronautical structures facilitate heat dissipation, undertaking maintenance, fitting auxiliary equipment, access ports for mechanical and electrical systems, damage inspection and also influences the dynamic behaviour of the structures. The aim of the present study is to establish a comprehensive perspective of dynamic behavior of laminated deep shells (length to radius of curvature ratio less than one) with cut-out by experiments and numerical simulation. The glass epoxy laminated composite shell has been prepared in the laboratory by resin infusion. The experimental free vibration analysis is carried out on laminated shells with and without cut-out. The mass matrix is developed by considering rotary inertia in a lumped mass model in the numerical modeling. The results obtained from numerical and experimental studies are compared for verification and the consistency between mode shapes is established by applying modal assurance criteria.


2013 ◽  
Vol 631-632 ◽  
pp. 957-961
Author(s):  
Jian She Peng ◽  
Gang Xie ◽  
Liu Yang ◽  
Yu Quan Yuan

This paper presents a new time-domain DQ (differential quadrature) method for structural vibration analysis. It adopts differential quadrature method both in space domain and in time domain on the basis of governing partial differential equation and initial-boundary value condition of vibration problems of structures, and gets new differential quadrature linear equations with complete initial-boundary value conditions for solving all parameters of the displacement-field. The examples in this paper show the time-domain differential quadrature method is a useful and efficient tool for structural vibration analysis.


Sign in / Sign up

Export Citation Format

Share Document