scholarly journals A New Chaotic Mixer Design Based on the Delta Robot and Its Experimental Studies

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Onur Kalayci ◽  
Ihsan Pehlivan ◽  
Akif Akgul ◽  
Selcuk Coskun ◽  
Ersin Kurt

In this study, a new chaotic mixer based on the Delta robot was designed and produced which had been controlled with Arduino Uno card and MATLAB. First of all, chaotic mixing systems with different dynamic properties were chosen for the chaotic mixing process. Then, by solving the chaotic systems selected in the MATLAB with the Runge Kutta 45 (RK45) numerical solution algorithm, the results in the integer format were obtained. The obtained chaotic time-series results were transformed into 3-dimensional position information for the servomotors used in the mixer with the algorithm developed in MATLAB. The supervision was provided to ensure that the newly designed chaotic mixer was pacing chaotically in x, y, and z coordinates by transferring the chaotic position information to the Arduino Uno R3 card via USB 2.0. With the software developed in MATLAB, the performances of 7 diversified chaotic systems’ trajectories and circular motion trajectories were compared over the numerical simulation orbital distribution ratio (ODR). In the final stage, in a solid-liquid mixture type, at the selected constant mixing time, experimental studies were performed where homogeneity and orbital distribution ratio (ODR) parameters were compared by using 7 diversified chaotic systems. The designed and produced chaotic mixer can also be used in experimental studies of certain liquid-liquid mixture types. It is thought that this prototype presented in the article will serve the aim of developing new chaotic mixer systems and algorithms to derive more homogeneous mixtures in a shorter time.

Author(s):  
Onur Kalaycı ◽  
İhsan Pehlivan ◽  
Selçuk Coşkun

In this study; it is aimed to increase the efficiency of the mixers in terms of important criteria such as product quality, homogeneity, time and energy saving by using chaotic systems instead of traditional mixing methods in the production of humic acid, which is one of the most widely used plant nutrition and soil conditioning products in our country and in the world. Based on these properties of chaotic systems: For experimental studies; by designing A PLC (Programmable Logic Controller) controlled mixer, whose all functions can be controlled by the HMI (Human Machine Interface) operator panel, was manufactured. In this mixer, liquid humic acid was obtained by mixing water, leonardite and potassium hydroxide (KOH). For chaotic mixing process; chaotic systems with different dynamic properties had been selected from the literature. The differential equations of these chaotic systems were solved according to the Runge Kutta 45 (RK45) numerical solution algorithm in an interface program developed in the Labview program, and the chaotic time series results of each chaotic system were obtained. By transforming those results into frequency datas with the program written on the PLC device, the mixer motor connected to the frequency inverter was provided to rotate in variable speeds according to the selected chaotic systems. By means of obtaining same mixture also with traditional methods (constant speed), the comparison was done in terms of product quality, solute ratio, pH values and total energy consumption. With respect to the derived results; it has been observed that mixing done by using chaotic systems is more efficient than traditional mixing methods in terms of criterion such as product quality, homogeneity, time and energy savings.


2021 ◽  
Vol 31 (06) ◽  
pp. 2150084
Author(s):  
L. R. Villa-Salas ◽  
L. J. Ontañón-García ◽  
M. T. Ramírez-Torres ◽  
J. Pena-Ramirez

In the theoretical and experimental studies of bifurcations in dynamical systems, the adjustments of the parameter values play a key role. The reason is because small variations in these values may result in topological changes in the behavior of the flow of the system. Taking this into account, in this paper, a new design for controlling bifurcation, suitable for electronic implementations of chaotic systems, is presented. The variation of the bifurcation parameter is performed by means of an Arduino UNO micro-controller and a digital controlled potentiometer. In this way, the variation of the electronic components is performed in an automated manner, avoiding the intrinsic problems of a manual variation of the circuit parameters. As a particular example, a scaled Rössler system is considered. One of the advantages of the controlled automated bifurcation is that it is useful for analyzing the robustness of the different limiting behaviors of the system against parameter mismatches.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3389
Author(s):  
Marcin Kamiński ◽  
Krzysztof Szabat

This paper presents issues related to the adaptive control of the drive system with an elastic clutch connecting the main motor and the load machine. Firstly, the problems and the main algorithms often implemented for the mentioned object are analyzed. Then, the control concept based on the RNN (recurrent neural network) for the drive system with the flexible coupling is thoroughly described. For this purpose, an adaptive model inspired by the Elman model is selected, which is related to internal feedback in the neural network. The indicated feature improves the processing of dynamic signals. During the design process, for the selection of constant coefficients of the controller, the PSO (particle swarm optimizer) is applied. Moreover, in order to obtain better dynamic properties and improve work in real conditions, one model based on the ADALINE (adaptive linear neuron) is introduced into the structure. Details of the algorithm used for the weights’ adaptation are presented (including stability analysis) to perform the shaft torque signal filtering. The effectiveness of the proposed approach is examined through simulation and experimental studies.


2021 ◽  
Vol 1037 ◽  
pp. 141-147
Author(s):  
Andrey Minaev ◽  
Juri Korovkin ◽  
Hammat Valiev ◽  
G.V. Stepanov ◽  
Dmitry Yu. Borin

Experimental studies magnetorheological elastomer specimens dynamic properties under the magnetic fields action on the vibrostend are carried out. Amplitude-frequency characteristics have been obtained. The magnetic field effect on the silicone magnetoreactive elastomers deformation properties and damping coefficients experimentally is established.


2014 ◽  
Vol 94 (2) ◽  
pp. 189-208 ◽  
Author(s):  
Catherine A. Fox ◽  
Charles Tarnocai ◽  
Gabriele Broll ◽  
Monika Joschko ◽  
David Kroetsch ◽  
...  

Fox, C. A., Tarnocai, C., Broll, G., Joschko, M., Kroetsch, D. and Kenney, E. 2014. Enhanced A Horizon Framework and Field Form for detailed field scale monitoring of dynamic soil properties. Can. J. Soil Sci. 94: 189–208. Taxonomic protocols for A horizon description are limited when detailed monitoring of soil change in dynamic soil properties is required for determining the effectiveness of best management practices, remediation efforts, and assessing subtle impacts on soil properties from environmental and anthropogenic stressors. The A Horizon Framework was designed by consolidating protocols from national and international description systems and expert opinion to optimize descriptive capability through use of additional enhanced lowercase designators. The Framework defines new protocols and syntax resulting in a unique soil fingerprint code. Five levels of enhanced lowercase A horizon designators are defined: Level 1, Soil processes and environmental context; Level 2, Soil structure-bulk density; Level 3, Organic carbon; Level 4, pH and electrical conductivity; and, Level 5, Soil and landscape context (i.e., soil texture, surface conditions, current land use, slope character). An electronic Field Form based on the new Framework syntax automatically records the soil fingerprint code in an enhanced (all Levels included) and a minimum detail mode focused on the key dynamic properties. The soil fingerprint codes become a powerful tool by which to identify trends of soil change and small alterations in the dynamic soil properties. Examples of soil fingerprint codes from selected Canada and Germany long-term experimental studies are presented.


2008 ◽  
Vol 22 (09n11) ◽  
pp. 1183-1188 ◽  
Author(s):  
ANATOLY BRAGOV ◽  
ALEXANDER KONSTANTINOV ◽  
ANDREY LOMUNOV ◽  
ANATOLY SADYRIN ◽  
IVAN SERGEICHEV ◽  
...  

High-porosity materials, such as chamotte and mullite, possess a heat of fusion. Owing to their properties, these materials can be used with success as damping materials in containers for airplane, automobile, etc. transportation of radioactive or highly toxic materials. Experimental studies of the dynamic properties have been executed with using some original modifications of the Kolsky method. These modified experiments have allowed studying the dynamic compressibility of high-porosity chamotte at deformations up to 80% and amplitudes up to 50 MPa. The equations of the mathematical model describing shock compacting of chamotte as a highly porous, fragile, collapsing material are presented. Deformation of high-porous materials at non-stationary loadings is usually accompanied by fragile destruction of interpore partitions as observed in other porous ceramic materials. Comparison of numerical and experimental results has shown their good conformity.


1966 ◽  
Vol 39 (2) ◽  
pp. 365-374 ◽  
Author(s):  
A. R. Payne

Abstract Increased time of mixing carbon black-rubber vulcanizates reduces dynamic modulus and dynamic viscosity as well as phase angle at moderate amplitudes of oscillation. Changes in dynamic properties with mixing time are shown to be associated with dispersion of carbon black.


2021 ◽  
Vol 1,2021 (1,2021(126)) ◽  
pp. 23-27
Author(s):  
Selyverstov Vadim ◽  
Dotsenko Yurii

The results of researches of influence of time of mixing of initial components in a dry condition on degree of assimilation of iron-containing component of forming and core iron-phosphate cold-hardening mixes are presented. The percentage of assimilation of the dispersed iron-containing component after each minute of mixing in laboratory runners with a total mixing time of 15 minutes was determined experimentally. Using the original method of particle separation, under the microscope were separated scale particles that were not assimilated (not distributed on the surface of the sand), and weighed them. The dependences of the degree of assimilation of the metal component of the iron-phosphate mixture on the mixing time at different initial contents are obtained. It is shown that the highest degree of absorption of the iron-containing component of iron-phosphate mixtures is achieved by mixing the components of the mixture for the first four to five minutes. Then this figure begins to decrease as the grains begin to collapse under the action of the rolls of the runners, and the forces of electrostatic interaction between the surfaces of the grains and the dispersion medium are reduced compared to the forces of mutual gravity between the dispersed particles of iron-containing component of the mixture. Based on the analysis of theoretical positions and the results of experimental studies, the assumption is made about the possibility of adjusting the conditions and parameters of solidification of phosphate binder systems, in particular using iron-containing filler of a certain dispersion and mixing the components in the dry state for some time. It is known that for mixing the components and assimilation of the required part of the iron-containing component of the mixture uses a significant amount of energy (depending on the type of unit used). To reduce the energy consumption of this process, the urgent task is to determine the degree of assimilation of the iron-containing component of phosphate cold-hardening mixtures in their manufacture by mixing the components in the dry state. Keywords: iron-phosphate cold-hardening mixture, mixing in the dry state, interaction, adhesion, experiment, research, dependence


Sign in / Sign up

Export Citation Format

Share Document