deep bed filtration
Recently Published Documents


TOTAL DOCUMENTS

182
(FIVE YEARS 22)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Jawaher Almorihil ◽  
Aurélie Mouret ◽  
Isabelle Hénaut ◽  
Vincent Mirallès ◽  
Abdulkareem AlSofi

Abstract Gravity settling represents the main oil-water separation mechanism. Many separation plants rely only on gravity settling with the aid of demulsifiers (direct or reverse breakers) and other chemicals such as water clarifiers if they are required. Yet, other complementary separation methods exist including filtration, flotation, and centrifugation. In terms of results and more specifically with respect to the separated produced-water, the main threshold on its quality is the dispersed oil content. Even with zero discharge and reinjection into hydrocarbon formations, the presence of residual oil in the aqueous phase represents a concern. High oil content results into formation damage and losses in injectivity which necessitates formation stimulations and hence additional operational expenses. In this work, we investigated the effects of different separation techniques on separated water quality. In addition, we studied the impact of enhanced oil recovery (EOR) chemicals on the different separation techniques in terms of efficiency and water quality. Based on the results, we identified potential improvements to the existing separation process. We used synthetic well-characterized emulsions. The emulsions were prepared at the forecast water: oil ratio using dead crude oil and synthetic representative brines with or without the EOR chemicals. To clearly delineate and distinguish the effectiveness of different separation methods, we exacerbated the conditions by preparing very tight emulsions compared with what is observed on site. With that, we investigated three separation techniques: gravity settling, centrifugation, and filtration. First, we used Jar Tests to study gravity settling, then a benchtop centrifuge at two speeds to evaluate centrifugation potential. Finally, for filtration, we tested two options: membrane and deep-bed filtrations. Concerning the water quality, we performed solvent extraction followed by UV analyses to measure the residual oil content as well as light transmission measurements in order to compare the efficiency of different separation methods. The results of analyses suggest that gravity settling was not efficient in removing oil droplets from water. No separation occurred after 20 minutes in every tested condition. However, note that investigated conditions were severe, tighter emulsions are more difficult to separate compared to those currently observed in the actual separation plant. On the other hand, centrifugation significantly improved light transmission through the separated water. Accordingly, we can conclude that the water quality was largely improved by centrifugation even in the presence of EOR chemicals. In terms of filtration, very good water quality was obtained after membrane filtration. However, significant fouling was observed. In the presence of EOR chemicals, filtration lost its effectiveness due to the low interfacial tension with surfactants and water quality became poor. With deep-bed filtration, produced water quality remained good and fouling was no longer observed. However, the benefits from media filtration were annihilated by the presence of EOR chemicals. Based on these results and at least for our case study, we conclude that centrifugation and deep-bed filtration techniques can significantly improve quality of the separated and eventually reinjected water. In terms of the effects of EOR chemicals, the performance of centrifugation is reduced while filtrations are largely impaired by the presence of EOR chemicals. Thereby, integration of any of the two methods in the separation plant will lead to more efficient produced-water reinjection, eliminating formation damage and frequent stimulations. Yet, it is important to note that economics should be further assessed.


2021 ◽  
Author(s):  
Jawaher Almorihil ◽  
Aurélie Mouret ◽  
Isabelle Hénaut ◽  
Vincent Mirallés ◽  
Abdulkareem AlSofi

Abstract Gravity settling represents the main oil-water separation mechanism. Many separation plants rely only on gravity settling with the aid of demulsifiers (direct or reverse breakers) and others chemicals such as water clarifiers if they are required. Yet, other complementary separation methods exist including filtration, flotation, and centrifugation. In terms of results and more specifically with respect to the separated produced-water, the main threshold on its quality is the dispersed oil content. Even with zero discharge and reinjection into hydrocarbon formations, the presence of residual oil in the aqueous phase represents a concern. High oil content results into formation damage and losses in injectivity which necessitates formation stimulations and hence additional operational expenses. In this work, we investigated the effects of different separation techniques on separated water quality. Based on the results, we identified potential improvements to the existing separation process. We used synthetic well-characterized emulsions. The emulsions were prepared at the forecast water:oil ratio using dead crude oil and synthetic representative brine. To clearly delineate and distinguish the effectiveness of different separation methods, we exacerbated the conditions by preparing very tight emulsions compared with what is observed on site. With that, we investigated three separation techniques: gravity settling, centrifugation, and filtration. First, we used jar tests to study gravity settling, then a benchtop centrifuge at two speeds to evaluate centrifugation potential. Finally, for filtration, we tested two options: membrane and deep-bed filtrations. Concerning the water quality, we performed solvent extraction followed by UV analyses to measure the residual oil content as well as light transmission measurements in order to compare the efficiency of different separation methods. The results of analyses suggest that gravity settling was not efficient in removing oil droplets from water. No separation occurred after 20 minutes in every tested condition. However, note that investigated conditions were severe, tighter emulsions are more difficult to separate compared to those currently observed in the actual separation plant. On the other hand, centrifugation significantly improved light transmission through the separated water. Accordingly, we can conclude that the water quality was largely improved by centrifugation. In terms of filtration, very good water quality was obtained after membrane filtration. However, significant fouling was observed. With deep-bed filtration, produced water quality remained good and fouling was no longer observed. On the basis of those results, we conclude that for our case study, centrifugation and deep-bed filtration techniques can significantly improve quality of the separated and eventually reinjected water. Thereby, integration of any of the two methods in the separation plant will lead to more efficient produced-water reinjection, eliminating formation damage and frequent stimulations. Yet, it is important to note that economics should be further assessed.


2021 ◽  
pp. 146808742199221
Author(s):  
Zhijun Li ◽  
Boxi Shen ◽  
Yanke Zhang ◽  
Xiangjin Kong ◽  
Shilong Li

In order to describe the microstructure of the porous wall of a gasoline particulate filter (GPF), a pore size distribution based on a probability density function (PDF) and a non-uniform porosity distribution are introduced. The dynamic process of deep-bed filtration in GPF with inhomogeneous wall structure is studied, considering different particle size distributions (PSDs). The results show that most of the particles are captured in the top region of the porous wall, in which the porosity and permeability reduce more obviously during dynamic filtration, and the bottom of the porous wall contributes little to the overall filtration. As time increases, the filtration efficiency of the porous wall for each particle size increases, and the most penetrating particle’s diameter becomes smaller gradually. The dynamic evolution of characteristic parameters of the porous wall, the most efficient filtration region, the pressure drop and the duration of deep-bed filtration are strongly influenced by PSD. This research illustrates the necessity to consider difference of PSDs when working on the filtration process of GPFs.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3419
Author(s):  
Patrik Sobolciak ◽  
Anton Popelka ◽  
Aisha Tanvir ◽  
Mariam A Al-Maadeed ◽  
Samer Adham ◽  
...  

This review covers various aspects of the treatment of emulsified oil/water mixtures and is particularly focused on tertiary treatment, which means the reduction of the oil content from 70–100 ppm to below 10 ppm, depending on national regulations for water discharge. Emulsified oil/water mixtures frequently occurs in water treatment processes because, in the petroleum industry, chemically enhanced oil recovery leads to the production of a vast amount of oil-emulsified wastewater. This review is focused on various aspects of tertiary treatment via granular deep-bed filtration. The importance of polymeric materials, as well as carbon nanostructures, which may be an alternative to the current media have been highlighting. The particular potential of polymers is based on their broad availability and low price (particularly for polyolefins), the simple treatment of their surfaces through a variety of chemical and physical methods to design surfaces with tailored surface free energy (wettability), and the porosity. Polymer technology offers a variety of well-established methods for designing foams with tailored porosity, which, together with appropriately tuned surface energy and controlled roughness, would open new avenues for the production of foamy media for efficient oil/water separation. Additionally, a crucial inventions in deep-bed filtration is discussed.


2020 ◽  
Vol 2 (9) ◽  
Author(s):  
Ali Shabani ◽  
Davood Zivar ◽  
Hamid Reza Jahangiri ◽  
Abbas Shahrabadi

Sign in / Sign up

Export Citation Format

Share Document