Produced Water Quality: The Effects of Different Separation Methods for Water and Chemical Floods

2021 ◽  
Author(s):  
Jawaher Almorihil ◽  
Aurélie Mouret ◽  
Isabelle Hénaut ◽  
Vincent Mirallès ◽  
Abdulkareem AlSofi

Abstract Gravity settling represents the main oil-water separation mechanism. Many separation plants rely only on gravity settling with the aid of demulsifiers (direct or reverse breakers) and other chemicals such as water clarifiers if they are required. Yet, other complementary separation methods exist including filtration, flotation, and centrifugation. In terms of results and more specifically with respect to the separated produced-water, the main threshold on its quality is the dispersed oil content. Even with zero discharge and reinjection into hydrocarbon formations, the presence of residual oil in the aqueous phase represents a concern. High oil content results into formation damage and losses in injectivity which necessitates formation stimulations and hence additional operational expenses. In this work, we investigated the effects of different separation techniques on separated water quality. In addition, we studied the impact of enhanced oil recovery (EOR) chemicals on the different separation techniques in terms of efficiency and water quality. Based on the results, we identified potential improvements to the existing separation process. We used synthetic well-characterized emulsions. The emulsions were prepared at the forecast water: oil ratio using dead crude oil and synthetic representative brines with or without the EOR chemicals. To clearly delineate and distinguish the effectiveness of different separation methods, we exacerbated the conditions by preparing very tight emulsions compared with what is observed on site. With that, we investigated three separation techniques: gravity settling, centrifugation, and filtration. First, we used Jar Tests to study gravity settling, then a benchtop centrifuge at two speeds to evaluate centrifugation potential. Finally, for filtration, we tested two options: membrane and deep-bed filtrations. Concerning the water quality, we performed solvent extraction followed by UV analyses to measure the residual oil content as well as light transmission measurements in order to compare the efficiency of different separation methods. The results of analyses suggest that gravity settling was not efficient in removing oil droplets from water. No separation occurred after 20 minutes in every tested condition. However, note that investigated conditions were severe, tighter emulsions are more difficult to separate compared to those currently observed in the actual separation plant. On the other hand, centrifugation significantly improved light transmission through the separated water. Accordingly, we can conclude that the water quality was largely improved by centrifugation even in the presence of EOR chemicals. In terms of filtration, very good water quality was obtained after membrane filtration. However, significant fouling was observed. In the presence of EOR chemicals, filtration lost its effectiveness due to the low interfacial tension with surfactants and water quality became poor. With deep-bed filtration, produced water quality remained good and fouling was no longer observed. However, the benefits from media filtration were annihilated by the presence of EOR chemicals. Based on these results and at least for our case study, we conclude that centrifugation and deep-bed filtration techniques can significantly improve quality of the separated and eventually reinjected water. In terms of the effects of EOR chemicals, the performance of centrifugation is reduced while filtrations are largely impaired by the presence of EOR chemicals. Thereby, integration of any of the two methods in the separation plant will lead to more efficient produced-water reinjection, eliminating formation damage and frequent stimulations. Yet, it is important to note that economics should be further assessed.

2021 ◽  
Author(s):  
Jawaher Almorihil ◽  
Aurélie Mouret ◽  
Isabelle Hénaut ◽  
Vincent Mirallés ◽  
Abdulkareem AlSofi

Abstract Gravity settling represents the main oil-water separation mechanism. Many separation plants rely only on gravity settling with the aid of demulsifiers (direct or reverse breakers) and others chemicals such as water clarifiers if they are required. Yet, other complementary separation methods exist including filtration, flotation, and centrifugation. In terms of results and more specifically with respect to the separated produced-water, the main threshold on its quality is the dispersed oil content. Even with zero discharge and reinjection into hydrocarbon formations, the presence of residual oil in the aqueous phase represents a concern. High oil content results into formation damage and losses in injectivity which necessitates formation stimulations and hence additional operational expenses. In this work, we investigated the effects of different separation techniques on separated water quality. Based on the results, we identified potential improvements to the existing separation process. We used synthetic well-characterized emulsions. The emulsions were prepared at the forecast water:oil ratio using dead crude oil and synthetic representative brine. To clearly delineate and distinguish the effectiveness of different separation methods, we exacerbated the conditions by preparing very tight emulsions compared with what is observed on site. With that, we investigated three separation techniques: gravity settling, centrifugation, and filtration. First, we used jar tests to study gravity settling, then a benchtop centrifuge at two speeds to evaluate centrifugation potential. Finally, for filtration, we tested two options: membrane and deep-bed filtrations. Concerning the water quality, we performed solvent extraction followed by UV analyses to measure the residual oil content as well as light transmission measurements in order to compare the efficiency of different separation methods. The results of analyses suggest that gravity settling was not efficient in removing oil droplets from water. No separation occurred after 20 minutes in every tested condition. However, note that investigated conditions were severe, tighter emulsions are more difficult to separate compared to those currently observed in the actual separation plant. On the other hand, centrifugation significantly improved light transmission through the separated water. Accordingly, we can conclude that the water quality was largely improved by centrifugation. In terms of filtration, very good water quality was obtained after membrane filtration. However, significant fouling was observed. With deep-bed filtration, produced water quality remained good and fouling was no longer observed. On the basis of those results, we conclude that for our case study, centrifugation and deep-bed filtration techniques can significantly improve quality of the separated and eventually reinjected water. Thereby, integration of any of the two methods in the separation plant will lead to more efficient produced-water reinjection, eliminating formation damage and frequent stimulations. Yet, it is important to note that economics should be further assessed.


2021 ◽  
Author(s):  
Jawaher Almorihil ◽  
Ahmed Alsmaeil ◽  
Ziyad Kaidar ◽  
Abdulkareem AlSofi

Abstract A second stage of gravity settling with the addition of demulsifiers or clarifiers is commonly used in processing plants to further treat the separated produced water. In previous work, we demonstrated gravity settling lower efficiency in removing oil carryover from produced water compared to other processing techniques. Both centrifugation and filtration were found to significantly improve the separated water quality. In this work, we focus on centrifugation and further evaluate its efficiency in improving the quality of separated water for both water and chemical floods, specifically surfactant/polymer (SP) flooding. Samples were firstly prepared to imitate the separation plant projected feed and operations. Synthetic representative brines were prepared and used with dead crude oil to prepare the oil/water emulsions. Emulsion separation was conducted at different temperatures, as well as different concentrations of SP, and the demulsifier. The kinetics and efficiency of separation were thoroughly studied over two stages of separation: primary gravity settling and secondary centrifugation. We performed gravitational separation using bottle tests in order to firstly obtain the separated produced water for use in secondary water treatment studies and to secondly further investigate gravity settling kinetics and efficiency. Water quality, in terms of oil content, was then assessed through solvent extraction and UV analyses. Samples of the produced water separated by the primary gravity settling were then exposed to secondary centrifugation. Centrifugation was performed at different rotational speeds using a dispersion analyzer. Light transmission evolution in space and time was used to study kinetics, efficiency and mechanisms of secondary centrifugation. The results reconfirmed that a single-stage gravity settling is not sufficient to reduce oil carryover to acceptable levels for disposal and re-injection into oilfields. Secondary centrifugation yielded clear and significant improvement in water quality even in the presence of EOR chemicals. With centrifugation, the separation efficiency was a function of the rotational speed. Higher rotational speeds resulted in higher creaming velocities and faster separation. In addition, creaming velocities indicated that higher temperatures yield favorable effects on oil droplets migration and separation rates. This is possibly due to the lower density and larger bouncy at higher temperatures. Based on these results, we conclude that secondary centrifugation is very efficient and effective in improving the quality of separated water. In terms of the effects of investigated EOR formulations, SP addition caused minor but manageable reduction in separated water quality at a level that would not harm conventional disposal practices.


2021 ◽  
Author(s):  
Rezki Oughanem ◽  
Thomas Gumpenberger ◽  
Jean Grégoire Boero-Rollo ◽  
Scherwan Suleiman ◽  
Jalel Ochi ◽  
...  

Abstract A water treatment pilot skid called WaOω has been developed by TotalEnergies to test the efficiency of the centrifugation technology in treating the produced water containing back produced polymer. In case of success, this technology would be implemented on field and the water quality targeted by the technology must allow re-injecting the treated produced water in matrix flow regime for pressure maintain and sweep efficiency. The same interest was expressed by OMV and a partnership project has been built. It was also agreed that OMV builds a second pilot skid called PRT that allows carrying out core flood tests onsite to assess the formation damage and related permeability decline that could be induced by the treated produced water. Both pilot skids have been implemented, connected to each other, and tested during more than one year on the OMV's Matzen oil field nearby Vienna where degraded polymer is already back produced by wells and present in the produced water. More than seventy core flooding tests have been performed in different centrifugation conditions in terms of speed and water qualities, some of them on high permeable sand packs representing the field targeted by TotalEnergies and some others on consolidated sandstone samples of lower permeability representing OMV reservoirs. The effect of adding fresh polymer to the treated produced water for EOR purposes has also been investigated. Some complementary core flood tests have also been performed in TotalEnergies labs using reconstituted sand packs and produced waters with and without polymer to understand the contribution of the degraded polymer alone, the produced water quality alone and both to understand the formation damage and some uncommon results observed with the PRT pilot skid. Core flood tests data often obtained on long injection periods revealed of a high quality, reliable and reproducible. They also showed that even if centrifugation seems to be a good technology, the very clean and transparent water that it delivered induced surprisingly some core permeability declines the origin of which would be discussed in this paper. However, it was clearly established that the presence of degraded polymer has a cleaning effect and limits the formation damage induced by the produced water injected on cores if the Total Suspended Solids in the treated water remains at an acceptable level. Adding fresh polymers limited even more the formation damage because their cleaning effect is more pronounced than with degraded polymer.


2013 ◽  
Vol 781-784 ◽  
pp. 2067-2070
Author(s):  
Zhong Chen Yu ◽  
Xue Jiao Zhang ◽  
Song Wang ◽  
Bing Sun ◽  
Xian Jun Zhou

According to the problem of polymeric compound appearing in oil field produced water, following by the changes of water quality characteristics that result in the polymeric compound accumulated in the filter tank which lead to the poor regeneration, being partly hardened and the losing, and the over standard of water quality, the study uses the technology of axial dynamic backwashing to back wash and regenerate the dual-media filter of walnut shell/quartz sand. The removal rate of oil content for filter materials reaches above 90% after backwashing. Simultaneously, cleaning the granular filter materials in filter bed achieves high removal rate of oil and suspended substance content, the average removal rate of oil content being 96.0% while the suspended substance 77.81% which greatly improved the water quality index.


2016 ◽  
Vol 10 (4) ◽  
pp. 437-444 ◽  
Author(s):  
Ilma Cirne ◽  
◽  
Jaime Boaventura ◽  
Yuri Guedes ◽  
Elizabete Lucas ◽  
...  

Infrared spectrometry and spectrofluorimetry methods were correlated in the measurement of oil concentration in produced water. Furthermore, we compared colorimetry and gravimetry techniques. Adsorption experiments were performed in synthetic oily wastewaters by polymer compounds based on poly(hydroxyethyl acrylamide and polypropylene. The residual oil content was used in the techniques correlation.


SPE Journal ◽  
2020 ◽  
Vol 25 (05) ◽  
pp. 2482-2495
Author(s):  
Jared Theurer ◽  
Oluwatobi Ajagbe ◽  
Jhouly Osorio ◽  
Rida Elgaddafi ◽  
Ramadan Ahmed ◽  
...  

Summary Recent studies have shown encouraging results using amine-coated magnetite (Fe3O4) nanoparticles to remove residual oil from produced water using a magnetic field. However, the manufacturing of magnetite nanoparticles requires an expensive coating operation, which limits the application of this technology in large-scale treatment operations. The goal of this study is to develop a simple, efficient, and economically feasible method for removing oil from produced water using nanoparticles. Iron oxide nanoparticles are biocompatible and even safely used in medical applications. This study focuses on the removal of residual oil from produced water using uncoated, recyclable, and less expensive maghemite (γ-Fe2O3) nanoparticles. These particles have shown the potential for removing oil layers from the surface of water. However, they have not been tested for their capability of removing emulsified and dissolved oil from produced water. In this study, commercial and synthesized maghemite nanoparticles were used. The maghemite nanoparticles were synthesized using the coprecipitation process. Laboratory-synthesized produced water samples with high oil concentration (1,000 ppm) were prepared by mixing medium oil with brine [1,180 ppm sodium chloride (NaCl) solution]. The nanoparticles were dispersed in 3% NaCl brine (w/w) at varying concentrations (0.31 to 5 mg/cm3) to form different nanosuspensions. Subsequently, the nanosuspensions were mixed with synthesized produced water for 10 minutes. When a magnetic field was applied to the mixture, a clear separation of the nanoparticles was observed within seconds. Residual oil in the samples was measured using nondispersive infrared spectroscopy. Oil content analysis confirmed the successful (99.9%) removal of oil from laboratory-synthesized water samples. For the real produced water samples, results showed a reduction of oil content to an undetectable level (i.e., less than 0.1 ppm). The ease of nanoparticle collection and washing after subsequent water treatments further demonstrates the feasibility of magnetic nanoparticle (MNP)-based separations for large-scale use in produced water treatment operations. The unique finding of this study is the elimination of one additional step of synthesizing (amine coating) MNPs. Direct use of uncoated maghemite nanoparticles with high oil removal efficiency can reduce produced water treatment costs and promote this technology as an economically feasible option within the industry.


Sign in / Sign up

Export Citation Format

Share Document