scholarly journals Seismic velocity structure of Unzen Volcano, Japan, and relationship to the magma ascent route during eruptions in 1990–1995

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kanta Miyano ◽  
Koki Aizawa ◽  
Takeshi Matsushima ◽  
Azusa Shito ◽  
Hiroshi Shimizu

AbstractSubsurface structures may control the migration of magma beneath a volcano. We used high-resolution seismic tomography to image a low- P-wave velocity (Vp) zone beneath Unzen Volcano, Japan, at depths of 3–16 km beneath sea level. The top of this low-Vp zone is located beneath Mt. Fugendake of Unzen volcano, which emitted 0.21 km3 of dacitic magma as lava domes and pyroclastic flows during eruptions in 1990–1995. Based on hypocenter migrations prior to the 1990–1995 eruptions and modeled pressure source locations for recorded crustal deformation, we conclude that the magma for the 1990–1995 eruptions migrated obliquely upward along the top of the low-Vp zone. As tectonic earthquakes occurred above the deeper part of the low-Vp zone, the deep low-Vp zone is interpreted to be a high-temperature region (> 400 °C) overlying the brittle–ductile transition. By further considering Vs and Vp/Vs structures, we suggest that the deeper part of the low-Vp zone constitutes a highly crystalized magma-mush reservoir, and the shallower part a volatile-rich zone.

1996 ◽  
Vol 33 (3) ◽  
pp. 460-471 ◽  
Author(s):  
Ian Reid

A detailed seismic refraction profile was shot along the continental shelf off Labrador, across the boundary between the Archean Nain Province to the north and the Proterozoic Makkovik orogenic zone to the south. A large air-gun source was used, with five ocean-bottom seismometers as receivers. The data were analysed by forward modelling of traveltimes and amplitudes and provided a well-determined seismic velocity structure of the crust along the profile. Within the Nain province, thin postrift sediments are underlain by crust with a P-wave velocity of 6.1 km/s, which increases with depth and reaches 6.6 km/s at about 8 km. Moho is at around 28 km, and there is no evidence for a high-velocity (>7 km/s) lower crust. The P- and S-wave velocity structure is consistent with a gneissic composition for the Archean upper crust, and with granulites becoming gradually more mafic with depth for the intermediate and lower crust. In the Makkovik zone, the sediments are thicker, and a basement layer of P-wave velocity 5.5–5.7 km/s is present, probably due to reworking of the crust and the presence of Early Proterozoic volcanics and metasediments. Upper crustal velocities are lower than in the Nain Province. The crustal thickness, at 23 km, is less, possibly due in part to greater crustal stretching during the Mesozoic rifting of the Labrador Sea. The crustal structure across the Nain–Makkovik boundary is similar to that across the corresponding Archean–Ketilidian boundary off southwest Greenland.


2021 ◽  
pp. 228973
Author(s):  
Junhao Qu ◽  
Stephen S. Gao ◽  
Changzai Wang ◽  
Kelly H. Liu ◽  
Shaohui Zhou ◽  
...  

Geophysics ◽  
2005 ◽  
Vol 70 (4) ◽  
pp. R45-R56 ◽  
Author(s):  
Lars Nielsen ◽  
Hans Thybo ◽  
Martin Glendrup

Seismic wide-angle data were recorded to more than 300-km offset from powerful airgun sources during the MONA LISA experiments in 1993 and 1995 to determine the seismic-velocity structure of the crust and uppermost mantle along three lines in the southeastern North Sea with a total length of 850 km. We use the first arrivals observed out to an offset of 90 km to obtain high-resolution models of the velocity structure of the sedimentary layers and the upper part of the crystalline crust. Seismic tomographic traveltime inversion reveals 2–8-km-thick Paleozoic sedimentary sequences with P-wave velocities of 4.5–5.2 km/s. These sedimentary rocks are situated below a Mesozoic-Cenozoic sequence with variable thickness: ∼2–3 km on the basement highs, ∼2–4 km in the Horn Graben and the North German Basin, and ∼6–7 km in the Central Graben. The thicknesses of the Paleozoic sedimentary sequences are ∼3–5 km in the Central Graben, more than 4 km in the Horn Graben, up to ∼4 km on the basement highs, and up to 8 km in the North German Basin. The Paleozoic strata are clearly separated from the shallower and younger sequences with velocities of ∼1.8–3.8 km/s and the deeper crystalline crust with velocities of more than 5.8–6.0 km/s in the tomographic P-wave velocity model. Resolution tests show that the existence of the Paleozoic sediments is well constrained by the data. Hence, our wide-angle seismic models document the presence of Paleozoic sediments throughout the southeastern North Sea, both in the graben structures and in deep basins on the basement highs.


Sign in / Sign up

Export Citation Format

Share Document