Micro-Osteo Tubular Scaffolds: a Method for Induction of Bone Tissue Constructs

Author(s):  
Tharwat Haj Khalil ◽  
Adeeb Zoabi ◽  
Mizied Falah ◽  
Nora Nseir ◽  
Dror Ben David ◽  
...  
RSC Advances ◽  
2016 ◽  
Vol 6 (46) ◽  
pp. 39982-39992 ◽  
Author(s):  
Tejinder Kaur ◽  
Arunachalam Thirugnanam

The development of living bone tissue constructs with structural, mechanical and functional similarities to natural bone are the major challenges in bone tissue engineering.


2020 ◽  
Author(s):  
Dong Nyoung Heo ◽  
Bugra Ayan ◽  
Madhuri Dey ◽  
Dishary Banerjee ◽  
Hwabok Wee ◽  
...  

AbstractConventional top-down approaches in tissue engineering involving cell seeding on scaffolds have been widely used in bone engineering applications. However, scaffold-based bone tissue constructs have had limited clinical translation due to constrains in supporting scaffolds, minimal flexibility in tuning scaffold degradation, and low achievable cell seeding density as compared with native bone tissue. Here, we demonstrate a pragmatic and scalable bottom-up method, inspired from embryonic developmental biology, to build three-dimensional (3D) scaffold-free constructs using spheroids as building blocks. Human umbilical vein endothelial cells (HUVECs) were introduced to human mesenchymal stem cells (hMSCs) (hMSC/HUVEC) and spheroids were fabricated by an aggregate culture system. Bone tissue was generated by induction of osteogenic differentiation in hMSC/HUVEC spheroids for 10 days, with enhanced osteogenic differentiation and cell viability in the core of the spheroids compared to hMSC-only spheroids. Aspiration-assisted bioprinting (AAB) is a new bioprinting technique which allows precise positioning of spheroids (11% with respect to the spheroid diameter) by employing aspiration to lift individual spheroids and bioprint them onto a hydrogel. AAB facilitated bioprinting of scaffold-free bone tissue constructs using the pre-differentiated hMSC/HUVEC spheroids. These constructs demonstrated negligible changes in their shape for two days after bioprinting owing to the reduced proliferative potential of differentiated stem cells. Bioprinted bone tissues showed interconnectivity with actin-filament formation and high expression of osteogenic and endothelial-specific gene factors. This study thus presents a viable approach for 3D bioprinting of complex-shaped geometries using spheroids as building blocks, which can be used for various applications including but not limited to, tissue engineering, organ-on-a-chip and microfluidic devices, drug screening and, disease modeling.


Author(s):  
E. Kruijt Spanjer ◽  
B.J. Klotz ◽  
I. Pennings ◽  
J. van Huuksloot ◽  
A. Rosenberg ◽  
...  

2010 ◽  
Vol 58 (S 01) ◽  
Author(s):  
W Kuroczynski ◽  
C Kampmann ◽  
R Huth ◽  
M Hartert ◽  
M Heinemann ◽  
...  
Keyword(s):  

Author(s):  
D. A. Petrochenkov

Fossils of marine reptiles are a new jewelry and ornamental material and collected in the Ulyanovsk region from the Upper Jurassic deposits. They consist of (wt. %): calcite — 52, apatite — 24 and pyrite — 23, and also gypsum presents. The contents of radioactive and carcinogenic elements are close to background. The original bone structure of reptiles is preserved. Apatite replaces the bone tissue of marine reptiles, forming a cellular framework. According to the chemical composition, apatite refers to fluorohydroxyapatite with an increased Sr content. The size of the crystals is finely-dispersed. Calcite and pyrite fill the central parts of the cells. Calcite crystals of isometric and elongated shape, 0,01—0,05 mm in size, form blocks up to 0,3 mm during intergrowth. Calcite fills thin, discontinuous veins along the contour of cells with a width of up to 0,03 mm. In calcite, among the impurity elements, there are (wt. %, on the average): Mg — 0,30, Mn — 0,39 and Fe — 0,96. Pyrite forms a dispersed impregnation in calcite and apatite, content of impurities is, wt. %: Ni — up to 0,96 and Cu — up to 0,24. On technological and decorative characteristics of fossils of sea reptiles of Ulyanovsk region are qualitative jewelry and ornamental materials of biomineral group, allowing to make a wide assortment of jewelry and souvenir products.


2016 ◽  
Vol 19 (2) ◽  
pp. 93-100
Author(s):  
Lalita El Milla

Scaffolds is three dimensional structure that serves as a framework for bone growth. Natural materials are often used in synthesis of bone tissue engineering scaffolds with respect to compliance with the content of the human body. Among the materials used to make scafffold was hydroxyapatite, alginate and chitosan. Hydroxyapatite powder obtained by mixing phosphoric acid and calcium hydroxide, alginate powders extracted from brown algae and chitosan powder acetylated from crab. The purpose of this study was to examine the functional groups of hydroxyapatite, alginate and chitosan. The method used in this study was laboratory experimental using Fourier Transform Infrared (FTIR) spectroscopy for hydroxyapatite, alginate and chitosan powders. The results indicated the presence of functional groups PO43-, O-H and CO32- in hydroxyapatite. In alginate there were O-H, C=O, COOH and C-O-C functional groups, whereas in chitosan there were O-H, N-H, C=O, C-N, and C-O-C. It was concluded that the third material containing functional groups as found in humans that correspond to the scaffolds material in bone tissue engineering.


2019 ◽  
Vol 608 ◽  
pp. 247-262 ◽  
Author(s):  
MD Ramirez ◽  
JA Miller ◽  
E Parks ◽  
L Avens ◽  
LR Goshe ◽  
...  

2002 ◽  
Vol 8 (5-6) ◽  
pp. 71-76
Author(s):  
N.V. Rodionova ◽  
◽  
V.S. Oganov ◽  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document