tack coat
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 37)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
Blaine M. Wruck ◽  
Erdem Coleri ◽  
Richard Villarreal ◽  
Vikas Kumar ◽  
James Batti

In light of the various quality assurance (QA) issues pertaining to tack coats that occur during construction, there is a need for a means of verifying interlayer bond quality in situ. Despite the immense use of tack coat as a constituent in paving, there are no construction specifications with provisions for the quantification of tack coat bond quality in laboratory or field settings. In this study, a construction QA process for tack coat bond performance was proposed. A novel field tack coat bond strength test device, TackBond, was developed and used for this purpose. The performance of engineered (new tack coat technologies that are tracking less) and conventional tack coats was also evaluated in the laboratory and the field using the developed TackBond test system. The TackBond device was improved in this study by adding features that render it more practical, portable, accurate, and better suited for a variety of pavement surface conditions. Engineered tack coat performance was compared with that of tack coats used conventionally on both milled and overlay surface types. The suitability of the TackBond Test device for capturing the true response of each tack coat was first evaluated by comparing results from TackBond laboratory tests with monotonic direct shear tests (DST) on laboratory-produced samples. Strong correlations between the two test types were achieved. Results of field and laboratory TackBond tests showed that the in situ QA control process developed in this study could be effectively used to improve the in situ tack coat bond performance.


2021 ◽  
Vol 23 (5) ◽  
pp. 39-46
Author(s):  
Kyungnam Kim ◽  
Shinheang Jo ◽  
Wenhui Cui ◽  
Nakseok Kim ◽  
Moonsup Lee

2021 ◽  
Vol 1 (1) ◽  
pp. 22-38
Author(s):  
Dowan Kim ◽  
Sungho Mun

Tack coat application rates and testing conditions differ among nations and construction conditions because various tack coat materials are available. In this study, newer materials are optimized for addition to porous asphalt pavements exposed to torrential rainfall, which is common in South Korea. Interface shear strength (ISS) tests are used to define the optimum application rates (OARs) of tack coat materials generally used in South Korea, by reference to the Korean Design Standard (KDS), the Korean Construction Standard (KCS), and features of pavement construction and bonding. We performed ISS tests using asphalt mixtures with porosities of 3, 5, and 7% to explore the effect of porosity on shear strength. The ISSs associated with varying tack coat proportions were earlier determined by creating polynomial regression equations. Here, we develop a predictive model using a non-linear function to estimate the OAR of tack coat and compare our approach with the earlier polynomial regression analysis. Based on the ISSs, the golden section search method was applied to define the OARs afforded by the predictive polynomial function. We used the generalized reduced gradient algorithm to construct a nonlinear predictive function using data from the ISS tests. Finally, our comparative analysis showed that the predictive model using the non-linear function was superior to the polynomial model in terms of both error rate and predictive tendency.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Fulu Wei ◽  
Jianfeng Cao ◽  
Hongduo Zhao ◽  
Bingye Han

The interface bonding between Portland cement concrete (PCC) pavement and hot-mix asphalt (HMA) overlay plays an important role in the performance of the composite pavement. This research conducted a series of comprehensive laboratory studies to investigate the influence factors of the interface bonding strength using a self-designed direct shear test apparatus that can simultaneously apply normal stress and shear stress on a specimen. Four kinds of commonly used tack coat materials were systematically tested and compared under various combinations of normal stress and temperature. Then, coupling effects of the normal stress and temperature on the interface bonding between PCC and HMA were analyzed. The test results show that temperature has a significant impact on the adhesion of the tack coat. Emulsified asphalt was considered the optimal tack coat material because of its simple construction method. In addition, it was found that a damaged interface could still provide considerable bonding strength. Normal stress generated by traffic loads was beneficial to the interface bonding strength, especially at lower temperatures. The temperature had a significant effect on interface bonding and played a leading role in the failure mode of interface bonding.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhongping Tang ◽  
Fanglin Huang ◽  
Hua Peng

Asphalt overlay or concrete overlay on existing pavements is a common strategy for pavement maintenance. Interlayer bonding performance between asphalt and concrete layers is a critical concern in achieving optimal long-term structural performance due to the possible cracking along the interface. In this study, bonding behaviors of asphalt concrete interface were characterized by employing mode I fracture tests conducted at −10 and 25°C, respectively. Two typical interface conditions were manually prepared. A tack coat material was applied on the interface with four distinct rates: 0.1, 0.2, 0.3, and 0.4 L/m2. Parameters including fracture strength, stress intensity factor (KIC), facture energy (GF), and energy release rate (J integral) were selected to evaluate the fracture performance. Results showed that optimum tack coat rates were 0.1 and 0.3 L/m2 for specimens with unmilled and milled surfaces. At the optimum tack coat rates, KIC and GF increased with the increase of interface roughness at −10°C, while, at 25°C, J integral of specimens with unmilled interface was larger than that of specimens with milled interface at the optimum tack coat rates. Analysis of variance (ANOVA) was conducted to evaluate the significance of the factors on the fracture loads and found that surface roughness is significant at −10°C and becomes nonsignificant at 25°C. Temperature and tack coat rate were significant factors considering a given interface.


2021 ◽  
Vol 7 ◽  
Author(s):  
Linyu Li ◽  
Yangquan Huang ◽  
Zhutao Shao ◽  
Dongya Ren

A pothole is a typical structural damage of asphalt pavements that significantly influence the life of asphalt pavements and driving safety. The durability of the existing pit repair methods is generally low. The existing studies in the context of pothole repair mainly focus on the selection and the amount of tack coat materials, nonetheless, very limited studies emphasize the effect of the joint interface shape. This study aims to investigate the influence of the interface joint shape on the service life of pothole repair by experimental testing. The strength and fatigue behavior of the joints were studied and the effectiveness of pothole repairs was evaluated under various conditions, including four temperature levels (5, 10, 15 and 25°C), four strain levels (750 με, 1,000 με, 1,250 με, and 1,500 με) and three loading frequencies (2, 5, and 10 Hz). The optimal interface joint shape was obtained by orthogonal tests. The results indicated that the bond strength and fatigue life of the high viscoelastic emulsified asphalt with an area density of 0.6 kg/m2 in the form of a 30° inclination joint was 473 and 80 times higher than those of traditional pothole repair (i.e., vertical joint form and no tack coat), respectively. Finally, a prediction model was proposed for the interface joint fatigue life considering external parameters through multiple regression analyses. This prediction model can provide a reference for the further study of asphalt pavement pothole repair.


Sign in / Sign up

Export Citation Format

Share Document